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WELCOME TO TEXAS 

The NASA space station will be the vehicle that will enable 
man to have a permanent presence in space. The First International 
Conference on Ada* Programming Language Applications for the NASA 
Space Station has provided an opportunity for the government, 
industry, and university to engage in a lively technical 
discussion related to the global network of information system 
resources for this new vehicle and its new world environment. 

The Lyndon B. Johnson Space Center, the University of 
Houston-Clear Ldke, and supporting ConLraCtors welcome all out-of- 
town attendees to Clear Lake during the Texas sesquicentennial 
year. The conference committee is committed to providing a 
quality technical conference and a friendly Texas experience for 
all attendees and their guests. The conference has been organized 
to provide multiple technical sessions/panels/zctivities on a 
variety of issues. In addition, the local arrangements committee 
will assist all attendees to plan and schedule non-conference 
activities that will provide an opportunity for everyone to enjoy 
the Houston/Bay Area/Galveston attractions. 

We believe the contents of this volume will provide a 
valuable technical resource for future research and development 
efforts directed to the support of NASA space activities. We are 
proud of the organizations and their people who have contributed 
to the success of t h e  conference. 
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Jack Gar an, Deputy Director Edward T. Dickerson, Dean 
Sciences and Technologies -e- Mission Support 

Ed Chevers, Depiity Chief 
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NASA Lyndon B. Johnson 
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Charles W. McKav. DirKc-tor ~~ 

High Technologies Laboratories 

University of Houston- 
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* Ada is a registered trademark of the U . S .  Government Ada 
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DEBUGGING TASKED ADA PROGRAMS 

R.G. Fainter 
Virginia Tech, 

and 
T.E. Lindquist 

Arizona State University 

Abstract 
The applications for which Ada was developed require distributed implementations of thc 

language and extensive use of tasking facilities. Debugging and testing technology as i t  applies IO 

parallel features of languages currently falls short of needs. Thus, the development of cnibeddcd 
systems using Ada poses special challenges to the software engineer. Techniques for distriburlng 
Ada programs, support for simulating distributed target machines, testing facilities for taskcd 
programs, and debugging support applicable to simulated and to real targets all need t o  bc 

addressed. This paper presents a technique for debugging Ada programs that use tasking and i t  
describes a debugger, called AdaTAD, to support the technique. The debugging techniqiic. IS 
presented together with the user interface to AdaTAD. The component of AdaTAD that monitors 
and controls communication among tasks has been designed in Ada and is presented through ; i n  

example with a \imple tasked program. 
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1. INTRODUCTION 

Because of the distributed nature of the Space Station and its unmanned platforms, software 
that the Space Station uses must be highly distributed. This implies, therefore, that the task will be 
used extensively in Space Station software. Because of the difficulties associated with locating 
errors in tasked programs and because of the cost of programming errors in Space Station 
software, tools to aid in the production of correct programs must be developed. Such a tool is 
currently under development and is described in this paper. 

One view of program testing [ I ]  indicates that a program has been tested when every 
statement in the program has been executed at least once and every possible outcome of each 
program predicate has occurred at least once. Considerable literature addressing techniques for 
testing software reflects a view of testing that is consistent with this definition. Although this 

definition does not naturally extent to tasked programs, it is indicative of the view that te+ting 
occurs late in software development and is oriented toward validation. 

In contrast, debuggers have traditionally had utility in earlier software development acti\.itic's. 
Accordingly, debuggers are used as automated support for locating errors and determining what i \  

needed to correct errors. Ideally, testing is used to identify the presence of errors and debuggsrs to 

support location and correction. When tasking facilities are included in a language, however. t h ~ f  

software designer is left without good testing techniques, and debugging must enter into the' 

process of identifying the existence of errors. 
Helmbold [2 ]  suggests that "Debuggers for parallel programs have to be more than passi\s 

information gatherers--they should automatically detect errors". When tasking errors dirrcti!, 
depend on the scmantics of the language, a debugger is able to actively aid in detecting errors. 
More commonly, errors are also dependent on the specific logic of task interaction and the U S C  o f  

the 1anguage.To take an active role in identifying this more complex type of errors, the debuggc1. 
must include facilities to analyze the logic of the program. Helmbold distinguishes types of tasking 

errors as "Task Sequencing Errors" and "Deadness". AdaTAD provides task information t h a t  in;i!' 

be used 10 detect either type of tasking errors, although it does not actively detect errors. 
AdaTAD is a debugger whose capabilities are specific to the problems of conclllyc'nl 

prol;rarns. The name AdaTAD is an acronym for Ada Task Debugger. Most debuggers allow tilt. 

user to tiace the execuiion of a program, but the proyam remains under control of the oper;i[ir\s 
system. Ada'I'AII differs from other debuggers by exxis ing  direct control over the execution of ;I 
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program's tasks. The user i s  able to specify which tasks run when, at what rate and for how long. 
Of course, to emulate morc closely the environment in which a program is to execute, the user may 
defer these decisions to the runtime system, and simply monitor task synchronization and 
communication. AdaTAD combines typical debugging facilities with others specific to supponing 
the Ada constructs for rendezvous. 

Space Station software may be configured in many different ways. One possible scenLirio 
might involve an Ada program with tasks running on an Earth-based computer, on one or more 
computers aboard the main station and on computers on one or more unmanned platfnrmA. 
AdaTAD has the capability to allow the software engineer to debug such a program in at least o 

different ways, Firstly, the software engineer may construct, solely on ground based cornputcr$, 
an environment similar to that which exists on the Space Station for debugging purpnws 
Secondly, because AdaTAD itself may be distributed, the program may be run  under AdaTAI) i n  
the actual Space Station environment. This allows the software engineer a great deal of llcxibl!lt! 
in exercising the program under a variety of conditions. 

A method for debugging tasked Ada programs and AdaTAD are presented jointly I n  i111\ 

paper. Our approach to task debugging centers on removing task errors from three S L I C C C \ \  I 1 c 

levels of consideration. Errors within tasks, which are principally independent of other [asks. ;ire 

first addressed. Next, the communication and synchronization structure among tasks is nddrs\\cd. 
and finally, any application specific concerns are addressed. AdaTAD, as i t  relates io thcse IC.\ c l \ .  
is discussed in the following three sections together with a discussion of our  a p p ~ r ~ . l l  to 

debugging. A subsequent section addresses the design of AdaTAD. Ada is used in ihe dcAlgt1 

allow increased effectiveness on multiprocessor applications, and to show how the r .cndc~\  O L I \  

constructs can be used to control the execution of tasked Ada programs. An Ada irnpI~r~icnt~i~1011 0 1  

AdaTAD would require emitting special code from the compiler for synchronization wiih ~ c 1 . 1 . l '  \ I )  

2. LOGIC ERRORS WITIlIN A TASK 

The first level of usage for the debugger is to address logic errors within each o f  ;I p x y r ; I n i ' h  

tasks. These errors are exclusive of intertask communication and synchronization. Rcmn\ lllg 
them is synonomous to removing errors detected during un i t  testing of software. At this level. \ve 

assume that iriteractions with other tasks are correct and examine thc activities of the task iist.If. 

Testing and debugging at this stagc considers a piece of software in absence of all elements of its 

environment except any procedures or fiinctioiis i t  calls. For example, a task may use itifonnarioii 

[>chugging Taks with AdaTAD B. l  1.3 
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obtained from other tasks to retrieve and update information in a database. Task logic to perform 
operations on the database is considered, at this level, exclusive of synchronization with other 
tasks. 

AdaTAD facilities are used in conjunction with a testing strategy in which some form of code 
analysis may be performed. AdaTAD is designed to aid in executing test cases and in removing 
any errors subsequently found. 

2.1 User's View of AdaTAD 

AdaTAD provides many facilities which are common to source level debuggers in addiiion to 
those specific to tasks. After introducing the manner in which AdaTAD includes common 
functions, facilities specific to removing logic errors from tasks are presented. 

Command Entry 

In accordance with the findings of Wixon [3], AdaTAD is designed to use command driven 
user input instead of either a menu or iconic input. Commands exist to control the initiation, 
configuration, and completion of an AdaTAD session as well as to control the execution of the task 
being debugged. Arguments to commands are entered as parameters to the command line itself. 
Each task has a keyboard assigned to i t  for interactive input. When a task is the ciirrent task Its 

keyboard is the physical terminal to which the task has been assigned. 

Information Display 

Since so much information is made available to the user of AdaTAD, a well engineered 
display is critical. We have designed an interface that combines textual and graphical st;ltus 
information in a windowing framework. The concept of windowing has recently received much 
attention. Windows allow a process to assume that i t  has a dedicated output device, independcnt of  
whether the window is being viewed. Assignment of screen geography can vary dynamically 
under user control to allow variable presentation of information. 

The Ada'TAD display consists of a set of task windows and a task interaction status display. 
'J'hc user may configure windows on the screen by using the WINDOW DEFINITION 
c(.)mmand. Figure I shows a task window and the panes that are included (the task interaction 
\t;ittis display is presented in the next section). The panes display information about the ciirrcnt a 
Debugging Tasks with Ada'TAD B.l  . I  .4 



execution state of the task, information on designated variables, the source code context and task 
output. 

AdaTAD control commands manage the appearance of the debugger to the user and perfonn 
basic initiation and termination of users programs. The commands include: 

EXECUTE --initiate program and enable execution 
DEFINE - WINDOW --specify size and location of a window 
ZOOM --alter the size of a window 
CURRENT - TASK --task to which taskless commands apply 
ASSIGN --associate ilo device with a task 
TERMINATE --complete the interactive session 

Although these commands are not specific to a particular task, they are needed in tailoring :I 

specific debugging session for logic errors. 

Task Name: Buf-control CE - integer, local, 0 
Execution Mode: NORMAL 
Breakpoints at: LAB 

Execution lnformatioq Ba ta In forma tioq 

-> select 
when CE > 0 

accept INSERT ( X : in out ELEMENT) do 
CE := CE + 2; 

,source Code Co n text Disola Y 

Task Outmt A r M  

Figure 1. Task Window Format. 

Task Execution Information and Control 
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TWO breakpoint facilites are provided for controlling the execution of statements within a 
task. Assertion breakpoints may be placed within the a task by adding an ASSERT statement to 
the program, and unconditional breakpoints may be associated with any statement of a task. Since 
Several allocated tasks may have the same task body, breakpoints cause breaks to occur in all tasks 
having the body. 

Four modes of task execution are provided to accommodate various debugging techniques. 

NORMAL --execute until encountering break 
SINGLE STEP --user initiated statement execution 
TIMED --execute statements at a given rate 
WAIT --suspend task execution 

When a task halts execution at a true or unconditional breakpoint, the task is placed in  ;i 

WAIT mode of execution. Execution is resumed by explicitly placing the task in another execution 
mode (NORMAL, SINGLE-STEP, or TIMED). 

Examination of Data. 

AdaTAD provides facilities for viewing or altering the values of program objects b), thc. 

object's source code name. If tasks communicate via shared variables, then AdaTAD aids i n  
detecting any attempt to violate the assumptions described in section 9.11 of the Ada Languiigc. 
Reference Manual i4J. 

2.2 Using AdaTAD to Remove Logic Errors 

Testing and debugging the logic errors within tasks can best be done by removing the 

influence exerted by the task's environment. The environment must be specified by the test C;IW 

and controlled by the debugger. All interactions with other tasks, such as entry calls to the tcstcd 

t a j k .  accepts of calls made by the tested task, or the use of shared variables are controlled duriris 
rcjtttlg and debugging by AdaTAD stub facilities. 

'['he test cases for this phase can be characterized as including input, environmcnt and 

cxpccred results. When the task is initiated in a state satisfying the input condition and exccutcd I I I  

rhc criviroriment specified then i t  should exhibit h e  expected results. The input condition dcsci.ibt.3 
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the values of inputs to the task, These may include the initial state of a database used by the task or 
of objects obtained through input. 

The environment specification must describe the necessary interactions with other tasks to 
carry out a test case. When selective waits or conditional or timed entry calls are contained in  the 
task, the specification indicates specific paths through the constructs relevant to the test. For 
example, a test case that is to examine a specific delay alternative must specify i n  its environment 
section conditions causing that delay to be executed. Further, to obtain the information needed for 
a test case it may be necessary to specify which task is to call a specific entry to the tested task. 

The anticipated results of executing a test case may not be as simply expressed as an  outpu t  

condition to be true when execution completes. Tasks may execute indefinitely, may termindtc In 

synchronization with others, or may transmit their results to other tasks through entry paramcurs. 
Accordingly, the anticipated result may be a condition to be me at a specific point during exzcu[ton 
of the task (possibly within an iteration). 

1 

AdaTAD Support 

AdaTAD facilities are used to execute test cases, and debugging can be done in conjunciicm 
with testing if needed. Facilities supporting the execution of test cases can be compared to thost of 
other debuggers for handling procedure stubs. In AdaTAD, these facilites include commands to: 

1. Cause a terminate condition to evaluate true, 
2. Provide a dummy entry call to a task with specific 

arguments, 
3. Cause an entry call to another task to be accepted and 

ou t  parameters from that call to be set, 
4. DeterminiTtically select an alternative in a 

nondeterministic selective wait, 
5 .  Selectively satisfy durations on delay statements. 

3. SYNC 11 R 0 N I Z A TI 0 N A hl ON(; T A S KS 

After checking the logic within a task, the communication and synchronization among ir141\4 

is considered. This step is analogous to integration testing i n  that the cooperation arnons p o ~ > i t > I ~ ~  
wvcral  ta5ks is addressed. Data flow and control flow through tasks of the program are c ~ b ~ \ . c . d  

at  this level of testing and debugging. From the perspective of a sing!? task, this level chcckh. i n  a 
rxdimcntary manner, the task's tasking environment. Subtle timiq interactions and infcwctioiis 
with thc operating environment are left to the final lcvel of citG;' ~ g .  

Ilzbugging Tasks with AdaTAD 



The scenario for testing and debugging follows the same approach as with task logic. Test 
cases rn identified using source code analysis. Test cases are run using AdaTAD support, and 
errors are located and removed using AdaTAD debugging facilities. Test cases focus on task 
interaction. Input conditions and expected results are included, but no specific information 
describing task execution constraints is included. 

3.1 Task Interaction Status 

AdaTAD's Task Interaction Status window depicts the state of rendezvous and consequenrly 
is particularly useful for synchronization testing. Within the window a graph is used to represent 
tasks of the program and relationships between tasks. Each task has a corresponding node in the 
graph, and relationships such as "depends on" and "is in rendezvous with" are depicted by 
directed edges from one task to another. Figure 2 shows a hypothetical program unit, called TI, a t  
some point of execution, and Figure 3 is the legend for the task status area. T1 ha5 four 
subordinate tasks, T2, T3, T4 and 1'5. Each of these subordinates has an underlying task type; 
A2 for T2, TS and A3 for T3, T4. Arcs with solid arrow heads indicate the dependent relation 
among tasks. Thus in this example, T1 has caused initiation of T2 and TS. Rendezvous and 
communication status is conveyed through double-line arcs. The arc from T2 to T5, with shaded 
lines, indicates that T2 is waiting at a r  unaccepted entry call to TS's entry E l .  E l  has a single 
input (IN) parameter, and for this call A is the argument. 

e 
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Task I n t e r a c t i on Status W i n do w 

The large shaded arrowheads (without bodies) pointing at T5 indicate the task will rioi hc 
immediately accepting the call to E l .  T5 is waiting at a selective-wait with three opcn ; I L ~ C ~ L - ~ I S  

( 1 2 ,  E3, E4). The large solid arc from ’1‘3 to T4 indicates that these two tasks are currenil!, in 

rcndezvous. ‘1’3 is the calling task and 1’4 is the accepting task, as indicated by the arrow-hc~d. 
For entry E5 the argument is B, which is an IN OUT parameter. 

Dcbugging Tasks with AdaTAD 
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T 2  Task dependence -- T2 depends on T1  

Task name [ and its type] 

"2 T 1  has queued a call to T2.E1(A) 

E l I , > T 2  T2 has an open accept for El (P)  
+A+ 

T1 T 2  T1  and T2  are in rendezvous at E l ( A )  

Shadings for Execution Modes 

Normal  Execution 0 
Waiting at statement S 1  At S 1  in Delay 

Throttled n 0 s e c l s  t m t 
At S 1  after Single Step 

Legend 
Figure 3. Legend for the task interaction status display 

Thc main program unit ,  TI,  is currently in a WAIT state of execution, as indicated by ~ l w  
\hided task node for T I .  The small s in the lower right of the task node indicates the t;rsk is 
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waiting because it was suspended. 

3.2 Execution Control For Checking Interactions 

The displays generated by AdaTAD for checking task interactions are the same as those for 
logic checking within a task, but the capabilities available to the user differ. When checking task 
interactions, AdaTAD does not allow the user to: 

1. Provide a dummy entry call to another task, or 
2. Provide a dummy accept of an outstanding entry call. 

Additional facilites are provided to specifically aid in debugging task interactions. 7 ' 1 ~ c . s ~  

include: 

1.  Break at rendezvous beginningkompletion, 
2. Examine the calling queue for an entry, 
3. Reorder the calling queue for an entry 
4. Examine/alter arguments to an entry call. 

Rendezvous breakpoint. provide a means for control to return to the user at the bouridariv\ 0 1  

a rendezvous. 
assertions, arguments, or results to determine correct communication between tasks. Rendszwuh 
breakpoints may be associated with either pairs of tasks or with entries within a task. I n  C)IIC' 
situation, the user may be interested in examining communication between tasks T1 and T2 c a ~ h  
time they rendezvous, independ of the entry at which rendezvous occurs. In another situation, a 

user may need to know parameter information each time that 2 specific entry within a task in c , r l ld .  
independent of what task is calling. 

When both tasks reach the synchronization point, the user may need to ex'i ' I l l  I ne 

4. A P P L I C A T I O N  SPECIFIC USES O F  A D A T A D  

The final stage of' debugging considers the operating environment in which the tasks I ~ I U ~ I  

C X C C U ~ ~ .  For a n  embedded system, thir may include operating within a set of tieterogcncous 
processors. each with different resourceh and capabilities. Testing arid debugging at this levcl is 
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often accomplished with a simulation of the operating environment. While specific tools are 
necessary to support this activity, AdaTAD provides facilities that are useful in a general manner to 
the problem of addressing the operating environment. 

The problems that may arise in this phase of testing include timing inconsisrewies among 
tasks, space requirements of a task, or resource contention caused by task interaction. Device 
interactions for special purpose input or output may be one cause. Another cause may be 
constraints imposed on the program by task distribution or the interaction between the task 
scheduling strategy and the operating environment. 

AdaTAD provides facilities slat allow the user to monitor program elements that will reveal 
these environment related problems. Ultimately, we recognize that the program under observation 
may to some extent be perturbed by the debugger. Nonetheless, a certain amount of debugging can 
be useful in this phase. To a large degree, testing technology is not appropriate for revealing 
application specific errors. This is an area in which ad hoc stress testing has been most 
successfully applied. 

The capahilities that support this aspect of testing include: 
1. Call Queue Display, 
2. Entiy Call Frequency, 
3. Accept Entry Frequency, 
5 .  Statement Execution Frequency, 
6. Object Update Frequency. 

-.le user can request that certain entry call queues be displayed automatically when modified. 
This provides a monitoring ability for a service rendezvous that is used by several tasks. The 
frequency displays allow the user to selectively obtain information that will show the contention 
points in  a program. Entry ca!l frequency may be obtained in two forms, entry call by any task and 
entry call by a named task. Statement and Object frequency information is useful in determining tlie 
dynamic space requirements of a task. One can observe executions of allocator statements or 
updates to objects detailing the size of dynamic structures. Although these facilities do not directly 
support monitoring interdctions with tlie external environment, often internal objects or statements 
reflect their status. 

5. ‘IIIE DFSIGN OF ADAI’AD 
As with any debugger, AdaTAD requires specific modifications to the compiler and linker. 

To allow the debugger itself to be designed and implemented in Ada, source code changes are made 
to provide synchroniution through AdaTAD entries. AdaTAD is, itself, a set of Ada tasks. There 
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are four major cooperating tasks including: 

1. AdaTAD Coordinator, 
2. Data Base Monitor, 
3. Command Processor, and 
4. 'Terminal Communicator. 

There are also two arrays of tasks, including: 

1. Logical Processor Tasks and 
2. Terminal Drivers. 

Additionally, there is a task to handle inpuuoutput between the user's program and  
non-terminal input/outyut devices. Figure 4 is a diagram of the overall structure of AdaTAD. 

AdaTAD tasks communicate via the rendezvous and a shared variable. The data base store< 
execution information about the user's tasks. AdaTAD effectively makes each user task pan ot a 
logical processor task, which controls its exeuction. '1 ne terminal communicator is responsible for 
receiving user commands and updating k .k displays. The data base monitor provides operations 
that both synchronize access to the data and perform data storage and retrieval functions. The 
coordinator mediates communication among logical processors whose user tasks art '  

synchronizing. The coordinator is also responsible for directing parsed user commands to the 
appropriate logical processor. 

Debugging Tasks with AdaTAD 6.1.1 .13 



Term I nal 
D r Ive ts  

TDO-TDn 

Data Base 
Monitnr 

Command 
Processor 

... 

Device Driver 
for Other 
Devlces 

AdaTAD 
Coordinator Task 

0 
LPO . . .  LPn 
~ 

Logical Processor 
Tasks - LP1-LPn 

Figure 4. Task structure of AdaTAD. 

5.1 
Logical processors are the most complex tasks in AdaTAD, iscause they monitor and control 

the synchronization among user tasks. Synchronization with othzr AdaTAD tasks is uscd to 
communicate the current state of execution to the data base maintained by the Coordinator. Logical 
processors have four entries for receiving input from the command interpreter, for servicing 
rendezvous requests from user tasks, for notifying rendezvous completion from servicing tasks. 
and for notifying task termination from other logical processors. Three tasks are defined w i t h i n  

Design of the Logical Processors 
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each Logical Processor. The EXECUTOR task directly controls environment for the user task, the 
TRANSMITTER task serves as a funnel for messages to the coordinator, and the  
EXECUTION-AREA-MONITOR maintains the variables which reflect the current execution state 
of the user task. Although the presence of three tasks complicates the Logical Processor, it allows 
for maximal parallelism in the execution of the Logical Processor, and it minimizes the time spent 
by the user task in synchronization with AdaTAD. 

8 

Receive-User - Command 

Through this entry, the logical processor is called by the coordinator when a user command 
is to be executed by the logical processor. A case statement within this entry selects the proper 
code to implement the command. With only two exceptions, the implementation of the command5 
at this level involve setting values in the execution data base. For example, if the user want, to 
change the execution state of a task, the command is channeled to the appropriate logical procc\m 
and the execution state variable is changed. 

Receive - Rendezvous-Completion. 

When a rendezvous between two user tasks completes, the calling task must be rrlrd5r.d : o i  

further execution. To do this, the AdaTAD coordinator calls Receive Rendezvous-Requr5t T1:c 
call indicates that a rendezvous requested by the task running on the logical processor lids hccn 
completed. The entry updates the local data base so that the user task can continue executm \n! 
arguments which were changed by the rendezvous exist in the argument list and are copied ro the 
appropriate area. 

- 

The Executor Task 

This task directly controls execution of the user's task. The compilation system modil'ic\ i l w  

user's task to physically nest i t  within the Executor. The Executor has one entry which is c.;lllc*d 

when another user task has issurd an entry call to this task. Tne call is fowarded to the Eseciiror 

by the logical processor's Receive-Rendezvous - Request entry when the coordinator sends an cnt1-y 

c;rll. The compilation system converts rendezvous code into procedures that may be call td to 

pcrform the rendezvous code. Thus, when the user task is ready to accept the call, the appropriate 
procedure is called. 
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Transmitter Task 

The Transmitter sends messages to the AdaTAD coordinator. It is called by the user's task to 
request an inputloutput service or to inform the coordinator that a rendezvous has begun or 
completed. Transmitter is called by the execution area monitor to send the current state of the data 
base to the coordinator. 

Execution Area Monitor Task 

Since the execution data base is a shared variable that must be accessed by the Executor, the 
Transmitter and the Logical Processor itself, synchronization to the information is provided by the 
Execution-Area - Monitor. Tasks requiring information from the data base get the information by 
making an entry call to the monitor. The task services the following entries. 

Sing step-rel: Called by the logical processor after the coordinator has signaled 
txat the user has pressed a key to cause execution of the next statement in single 
step mode. The entry enables execution of the next statement. 

Set-bk-state: Called by the Logical Processor to enable or disable breakpoint 
checking. 

Set ex-md: Called by the Logical Processor whenever the execution mode is to 
-be changed. 

Set-ex-rt: Called by the Logical Processor to set the rate for timed execution. 
Set-timed: Called by the Logical Processor to enter timed execution mode. 
Examine-exe: 

When there are no outstanding entry calls to the monitor, the current execution mode is 
determined and the appropriate action is taken. If the execution mode is TIMED, the monitor 
determines whether it is time to execute the next statement. 

Called by the statement prologue to see whether statement 
execubon is enabled. 

5.2 The Coordinator Task 

The AdaTAD coordinator mediates communication among AdaTAD tasks. When user t a A h  

rendezvous, the coordinator handles communication among their Logical Processors. This 
mediation occurs when a rendezvous is requested, when a rendezvous completes and whcn a 
rendezvous begins. The Coordinator also mediates inputloutput requests for user tasks. To allow 
all appropriate information regarding the execution status of tasks, all communication with the 
uiidcrlying operating system must be recorded. This is done when a user's task requests service 
irnd when control returns from the operating system facility. Two further functions of the 
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Coordinator are to dispatch AdaTAD user commands to the appropriate Logical Processor and to 

C O l k c t  status information for data base modifications. The coordinator interactively accepts entry 
C d l S  to its entries in the order in which they arrive. We now describe the Coordinator in terms of 
its entries. 

Rendezvous-request,  

When one user task requests a rendezvous with another, the requesting task's Logical 
Processor makes a call to this entry of the Coordinator to initiate the rendezvous. The coordinator, 
in executing the call, looks up the Logical Processor for the called task. The name of the called task 
is taken from a descriptor list which also includes parameters for the call. Before making an enuy 
call to the Logical Processor of the called task, Coordinator sets an indicator to show that the calling 
task is awaiting synchronization. 

Ren  d ezvous- beg i n. 

When a rendezvous begins, the called task calls this entry with the names of the I ~ O  

synchronized tasks. The entry updates the synchronization information for the two tasks. I t  clc.,ir\ 

the waiting indicator, sets the is-synchronized indicator and records the names of the c.il1r.d 

and calling tasks in the synchronization data base. 

Rendezvous - completion. 

When the called task completes its rendezvous code, its logical procesor calls t h 1 b  cnir! 
This occurs when the servicing task either terminates or encounters the end of the synchwnl/cd 
code of an accept statement. The entry updates the synchronization data base to wt1cL i  r h c  

. rendezvous has completed. Further, an entry call is made to the logical processor l u n n l n ~  tlx 

served task so i t  may continue execution. The single parameter for this entry is the name o f  tllc i.~\l,  

which has been served. 

Data - base - update. 

Each logical processor has local data that controls the execution of the user's task. When that 

data changes, the central data base is periodically informed through calls to this entry by Logical 
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b e s s o r s .  Parameters convey the task name and its execution state. A local procedure, which the 
entry uses to perform the update, blocks the data base monitor task from looking at the data base 
while doing the update. 

5.3 Data Base Monitor Task 

The data base monitor is used to implement exclusive modification of the data base and to 
drive terminal updates of task status. An AdaTAD task acquires exclusive access to the data base 
through the Monitor's Hold and Release entries (p and V). For example, Hold is called by the 
Coordinator prior to making data base modifications required by a user command. After 
completing the modifications, Release is called. 

The current state of the data base is transmitted to the Terminal Communicator task for 
display when no other task is modifying the data base. This is accomplished with an else clause on 
the selective wait for the Monitor's Hold entry. If no AdaTAD task has queued a call to Hold when 
the selective wait is encountered, then the else clause is executed and information is sent to the 0 Terminal Communicator. 

5.4 The Command Processor Task 

The Command Processor analyzes the user commands. When a command is successfully 
parsed, it is dispatched, along with its parameters, to the AdaTAD Coordinator for execution. Even 
commands which affect information display are executed by the Coordinator. If a command is 
erroneous, nothing is sent to the Coordinator, and an error message is sent back to the Terminal 
Communicator. The intern91 procedure Analyte-Command does the lexical and syntactic analj,his 
of the command. 

Parse is the only entry into the Command Processor. Parse is called by the Terminal 
Communicator when unsolicited input occurs on a terminal. 

5.5 The Terminal Communicator Task 

A task's terminal input and output is controlled by the logical processor, through the 
mediation of the Terminal Communicator. The Terminal Communicator also provides the 
inlelligence for display of the AdaTAD data base. The Terminal Communicator manages the 
windowing capability of AdaTAD. The five entries in this task receive information from the 
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Coordinator, the terminals, the Data Base Monitor and the Command Processor 

From-Terminal and From-Coordinator 

The Terminal Communicator task has two accept statements for the From-Terminal entry. 
The first handles unsolicited input from a terminal. Assuming that unsolicited input is a command, 
the first accept receives an information string and passes that string along to the Command 
Processor. For example, when the user enters the string "set wait", the Terminal Communicator 
assumes that this is a command and sends it to the Command Processor. 

The From-Coordinator entry is called by the Coordinator when a user task requires input or 
output. We call this solicited input or output. The second accept for the From-Terminal entry is 
used for input of solicited information. From-Terminal is accepted after accepting the  
From-Coordinator entry. These entries are called when a user task has requested terminal input. 

From-Command-Processor 

This entry is called by the Command Processor when it has detected an error in a user 
command. This entry displays the error message on the terminal from which the command was 
entered. 

0 

5.6 The Terminal Drivers 

The Terminal Drivers are an array of tasks that handle the transmission of data between rhc 

physical termhals and the Terminal Communicator. The Terminal Driver has four entries and o ~ i c  
internal task which has no entries. 

The 3utput entry is called by the Terminal Communicator to write a string on a terminiil. I t  

then c.dls the Output entry in the Terminal Driver. Output accepts the string and wites i t  on rhc 

device through the appropriate Terminal Driver. The Input entry passes the string and the Ter~iit~i,d 
Driver number to the Terminal Communicator. 

Te r min a I-wa t c he r 

Internal to the Terminal Driver is a task whose sole job is to wait for an input string from rhe 

terminal. When a string is received, as indicated by a terminal character, the task makes a n  entry 
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call to the terminal driver's input entry, passing the string. The identify entry is called by the 
Terminal Communicator as soon as the driver begins execution, to assign the driver a number, 
which is used in all communication. 

5.7 An Example of Synchronization Among User Tasks 

Controlling the synchronization of user tasks is the most complex of actions that AdaTAD 
performs. AdaTAD must intervene when a rendezvous request is made, when the rendezvous 
begins, and again when the rendezvous ends. To keep track of these interactions, the compiler 
converts user entry calls to calls of AdaTAD task entries. The compiler also generates code to 
inform AdaTAD when a rendezvous actually starts and when i t  completes. In this manner, 
AdaTAD can record the status of all user task synchronization. These actions occur whenever a 
rendezvous request is made, but they are normally transparent to the user. The following 
paragraphs describe what occurs in each case of AdaTAD intervention. 

As an example of how AdaTAD controls execution, assume that two tasks (A and B )  are 
running. Assume that task A wants to make an entry call to task B's entry named El .  Since the 

example is concerned with synchronization only, we assume that no data are passed during the 
rendezvous. Assume further, task A is running on logical processor one and task B is running on 
logical processor two. 

Rendezvous Request 

Task A has an entry call statement of the form B.El.  For thk call, the compiler generates 
code to produce an empty argument list (alist), which consists only of the head node. This node 
names the calling task, the called task and the called entry. The compiler converts the statemeni 
I3.El into: 

TRANSMITTER.SEND RENDEZVOUS REQUEST(a1ist); - - 

The first action that takes place at execution time when task A is ready to make this 

rendezvous is that the transmitter is invoked. The transmitter's send-rendezvous request entry 
accepts the call and immediately sets task A's execution mode to wait. Then, the transmitter 
makes an entry call to the coordinator, passing the argument list along unchanged. 

The request for rendezvous arrives at the coordinator's Rendezvous-Request entry. The 

- 
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coordinator looks in the argument list, to get the name of the called task, in this example, 13, and 
gets the number of the logical processor that is running the called task. The coordinator then looks 
up the called entry name in the task data base. In this example, the entry is E l .  The coordinator 
uses the number to index the array of tasks which implement the logical processors. Next, the 
coordinator makes an entry call to the Receive-Rendezvous - Request entry of the appropriate 
logical processor. At this point, the synchronization information on the calling task, A ,  will bl: 
updated to reflect that it is waiting for a rendezvous, and AdaTAD knows that a rendezvous request 
has been made and that the calling task is in a wait state for that rendezvous. Further, the user 
notices on the display that the calling task has entered a wait state awaiting a rendezvous. The 
display also indicates the task being called, the state of the calling task and any other tasks awaiting 
rendezvous. 

When the Logical Processor accepts the rendezvous request, it passes the argument list to ihc 
executor running task B. The Executor receives the request at its Rendezvous entry and extrac!$ 
the name of the called task and entry from the argument list. The name of the calling task ( A )  I \  

used later to tell the coordinator that the rendezvous is in progress. The name of the entry allows 
the executor to request the proper entry into the user's task. If appropriate, the Executor calls thc 
procedure written by the compiler for the receiving task. This procedure decodes the argument list 

and executes the entry call into the user's task. Assuming that the called task, B,  is waiting at the 
entry being called, the Executor's entry call is answered immediately and the user's task besiiis 
execution. 

6 

0 

Accepting a Rendezvous Request 

The first thing that the user task's accept statement for E l  does is make an entry c;ill io the 
transmitter with the name of the calling task. This entry call is t o  [he 
Send-Rendezvous-Beginning entry. The entry sets the called task's execution data base to rctlect 
that the called task is now running, and then the coordinator is informed that the rendczivus i s  

beginning. The coordinator acts on this information by updating its synchronization informJrinli 
data base. The user would now see that the rendezvous is in process in the display area. After rllc 

user's task indicates tha! the rendezvous has been accepted, AdaTAD does not intervenc. /\ L I W I  

observing the synchronized behavior of the tasks would see that they obey thc n ~ l c s  ot' 
synchronization prescribed by Ada. 

When the rendezvous between A and n is complete, the servicing task, D, eiicoiinters a call 
to the Transmitter's ,ontry Send_Rendezvous_Complelion. The servicing task remains in a ninning 
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state until it reaches a point where it must wait for another rendezvous. The Transmitter sends a 
message to the coordinator that the rendezvous is complete. As far as the servicing task's logical 
processor is concerned, the rendezvous is now over. However, there is still work for the 
coordinator to do. Upon receiving notification of the termination of the rendezvous, the 
coordinator updates its synchronization data base to reflect the end of the rendezvous. As far as the 
coordinator is concerned, the rendezvous is now over, as indicated by calling 
Receive-Rendezvous - Completion in the logical processor running the calling task. When the 
calling task's logical processor receives this message, the calling task's execution mode is set to 
run so it can proceed. 

Wait for Synchronization 

If the called task in the above scenario is not waiting at the entry, it  would not immediately 
inform the coordinator that the rendezvous had begun. Thus, 
wait in its data base. The user would be able to see the called 

0 calling task waiting. 

the coordinator would reflect the 
task executing elsewhere and the 

6. SUMMARY 

The problem of testing and debugging Ada programs that make extensive use of tasking 
facilities has been addressed in this paper. We have considered an zyproach to debugging tasks 
that is similar to the scenario in which software units are first considered. Following u n i t s ,  
interactions among units are addressed. Our approach recommends a three tier approach to 

debugging tasked programs. The first tier considers the logic of tasks independent of their  
interactions. The second tier addresses interactions among tasks that take place through rendezvous 
and synchronized access to shared data. The final tier deals with application specific concerns. 
Here, the subtlities of the interactions between a tasked program and its 3perating environrrmt ;ire 

considered. 
We have presented the design of a debugger suitable for applying this methodology. 

AdaTAD , which stands for Ada TAsk Debugger, includes facilities specific to each of thc tiers. 

When used in conjunction with a testing methodology, AdaTAD supports the execution of tchi 
c a w s  and the process of 2rxating and fixing errors uncovered through testing. We have yrcsented 
[he user interface to AdaTAD in conjunction with an explanation of the three tiered approach to 
deb iiggi n g tasked programs. 0 
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The applications for which Ada is intended require a level of technology that currently 
doesn'i exist in today's Ada compilation systems. For embedded real-time systems, a compiler 
must support the distribution of an Ada program across a set of possibly hetergeneous processors. 
When such compilation systems appear, we will immediately be faced with the challenge of 
demonstrating the reliability of Ada software. In addition to modifying existing testing and 
debugging methodologies, special purpose tools such as AdaTAD will be required. To east: the 
implementability of a system such as AdaTAD, we have designed the bulk of the system in Ada 

While an Ada design certainly compromises execution efficiency, I t  also eases implementai~cms 
The final section of this paper has presented the Ada design of AdaTAD together with an example 
of how synchronization can be controlled and monitored using Ada primitives. 
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The Goals of Unit  T e s t i n g :  

Software Unit Testing in an Ada Environment 

Glenn W ?.mock 
PRIOR Data Sciences 

htroduction: 

PRIOR Data Sciences IS currently developing a validation procedure for the Ada 
binding of the Graphical Kernel System (CKS). PRIOR is also producing its own 
version of GKS written in Ada. These major software engineering projects will 
provide an  opportunity for PRIOR to demonstrate a sound approach for software 
testing in an  Ada  environment. 

PRIOR’s GKS/Ada validation capability will be a collection of test programs and 
da ta ,  and  test management !idelines. ‘These products will be used to assess thc 
correctness, completeness, aud efficiency of any GKS/Ada implemen thtion. 
GKS/Ada developers will be able to obtain the validation software for the i r  o w n  
use. PRIOR anticipates tha t  this validation software will eventually be taken o v e r  
by an  independent standards body to provide objective assessments of C;I<S/Ada 
implementations, using an approach similar to the validation testing currently 
applied to  Ada compilers. In the meantime PRIOR will, i f  requested, use this vali- 
dation software to assess CKS/Ada products. This project will require PRIOR to 
offer a well organized, thorough, and .::actical method for high level product test- 
ing. 

T h e  second project, PRIOR’S implementation of GKS using the Ada language, is a 
conventional software engineering task. It represents a large body of Ada code and 
h a s  some interesting testing problems associated with automated testing of graph-  
ics routines. Here PRIOR’S normal test practices which include automated regres- 
sion testing, independent quality assurance, test configuration management ,  arid 
the application of software quality metrics will be employed. 

PRIOR’s software testing rri~thods c>rnphasiw quality enhancenirilt and autom;l tcd  
procedures. These general mcthods apply to s d t w a r r  written in  a n y  progr:rrlinlirig 
language. Ada makes somv aspccts of t w t i n g  casic.r, and iiitrodrtccs ~ 0 1 1 i t ’  t i t . \ \  I OII-  

cerns. T h e w  issues arc addrcsscd hcalow. 
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suite will have to be carefully organized so that  i t  is both robust, and yet still easy 
to use. 

Testing of GKS/Ada provides an excellent example for our examination of Ada 
unit testing. Comprehensive and sophisticated unit tests are required to test the 
complex functionality. The requirements are well defined by the GKS standard, 
while the design specifications are covered by the proposed standard Ada binding 
for GKS. A unit test plan should test both the GKS requirements, and the 
GKS/Ada binding characteristics, 

Testing Techniques: 

Essentially, the purpose of unit testing is to exerrise the module under test to ver- 
ify that  it performs correctly without producing undesirable side effects. PRIOR 
has developed TESTWARE, a collection of tools which provide a standard metho- 
dology to exercise and validate software modules. TESTWARE is used to  initialize 
the appropriate global data areas and call the module to  be tested with the 
appropriate input parameters. The returned parameters and results are then 
verified. 

The use of a tool such as TESTWARE resiilts in a suite of test cases which has 
significant value for the full life of the associated software module. An additional 
benefit of such a methodology is the ability to measure the degree of test coverage, 
to track the progression of testing, and to schedule software projects with greater 
accuracy. 

0 

The basic component of PRIOR'S TESTWARE is the test driver. The test driver 
provides the framework necessary to r u n  the tests and log the results. For each 
test, the necessary initializations of global data and i n p u t  parameters a re  per- 
formed by the test driver. The module under test is called, executes and returns. 
The test driver must verify the return parameters and validate the global data.  

In  the course of execution of the module, some stubs may be necessary to "fezd" 
the module with the necessary output parameters. It is often desirable to verify 
that the correct stuhs are called arid the appropriate input parameters passed to 
them. For these testing activities it woiild br very convenient to have an Ada coiii- 

pilation system that treated eve ry  call to air rincoriipiled subprograrn as a request 
to interact with thca test operator. 'I'hc Ada systc!ni should make known the  
pararnetor values p;tssetl i n ,  ; i r i t l  pri i i i t  tlic operalor LO sripply valutbs to hc 
rc!tiirric:d. Wc arc! ciirrolitly w r i t i n g  st.iil! ;oiitirios to do  this, bu t  it wori1c i  1)tl 1iiore 
ctfficiont, to havct t,his c l o i i c '  ; i i i t~~ri i~t i ( , ; i l ! ,~ .  Ad:i wiiipilxtioii systciiis wit11 this capa- 
t),jit,y will bc vory  i ~ ~ ~ f i l ' i l l .  



template, the test developer uses standard utilities and adds specialized code to 
perform the necessary initializations and verifications. 

The  test driver is actually driven by the test data. Data is required for initializing 
the global da ta  and specifying the input parameters. Stub data  is comprised of 
s tub  names, expected input parameters, and the required output parameters. 
Additional data  describes the expected output parameters and specifies expected 
changes to globrii data. The separation of data  from the test program eliminates 
the need to  recompile the software when test data  must be changed. An unlimited 
number of test cases can be defined in a single test data  file. 

Standard uti!ities are used to provide the translation from data  to test case. The 
greater the flexibility available in describing test data, the more powerful and easy 
to  use will be the testing tool. The tester should be able to easily specify 
enumerated types, character strings, and floating and fixed point real numbers. A 
range or allowable delta must be available for specifying expected output values 
such as floating point reals. 

A variety of automated test tools such as TESTWARE have been developed for 
languages such as Pascal, C, and FORTRAPI. These often test for errors which 
will not occur in Ada due to the stropg typing, interface checking and run time 
error checking. However, additional testing difficulties arise which relate 
specifically to the Ada language. Testing of tasking operations is necessary to 
identify deadlock and starvation. Pn;ce.'ures for testing generic packages are 
required. Run time performance must also be assesed. 

The  GKS/Ada validation suite poses some additional problems. GKS output is 
often of a form which is most easily validated interactively. As an example, one 
test case may cause a green duck to be drawn upside down in thc lower left corner. 
An important aspect of effective testing is that  the test itself should validate the 
results. If  the test procedure simply describes the correct display the operator may 
not notice i f  the green duck actually appears in the lower right corner. It is prcfer- 
able to have the test software ask: "What colour is the duck?" (Green). "Is i t  
upside down?" (Yes). "1s it in  the lover left corner?" (No). It can be seen from t h i s  
exhrnple that  the task of supplying effective test software is a significant one. 

The overall convideration in the design of TESTWARE is that the tester l \ ; \vt> I I I ~ Y  
necessary tools to easily crcatt! the appropriate environment for runni r ig  t l i e  i i t i i t  

under test arid to ht! ahlo to verify its actions ;rnd rcsults. A t  ttic sari if^ I i n i c l  t i t s  

m u s t  not he rcquired to providc tdioi is  xrnoiirits of d x h  which a r c  not t l i r c n c t  I!. 
rc!lated to the tcst .  

Project Management: 

! i f t ~ ~  thv test, portion of a softwaro projwC is not given the attention or impor- 
t,;incc i t ,  dest!rves. 'l'c!sting is ~isti:dly vicbwrd as something like "the process of 
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demonstrating that  errors are not present' when actually errors are inherent in 
software. When software is tested by the person or group which developed it, with 
this attitude, it is not surprising that many errors go undiscovered. 

To be successful testing should be approached with the philosophy expressed by 
Glenford Meyers. 'Testing is the process of executing a program with the intent of 
finding errors'. Testing is really a destructive process. The implementation 
schedule should reflect this and allow the necessary time for testing and correc- 
tions. The  evaluation of test effectiveness s h o J d  be based on the number of errors 
discovered. To be most effective it is best to have an independent test team. 

Significant responsibilities must rest on the test authority. Developing a unit test 
for every module in the system is often not appropriate so the test authority must 
determine which modules should be tested and in which combination and order. 
T h e  selection of appropriate test cases is critical to the success of testing. 

Testing can be performed in an incremental or non-incremental manner. In the 
non-incremental method, all modules are tested seperately, with calls to lower 
modules replaced by stubs. When all modules have been tested, they are 
integrated and tested as a system. This method allows for greater parallelism in 
the unit testing process. 

With incremental testing, the previously tested modules are used by the module 
under test, when available, instead of stubs. This provides more test coverage as 
the earlier modules are more extensively exercised. Also, integration and interface 
errors are discovered earlier and are easier and less expensive to correct. 

Although top down design is often the preferred method of large system design, 
top down implementation and testing are not always preferrable. It is difficult to 
use an  incremental method of testing if top-down implementation is used, as it 
becomes increasingly more difficult to provide the necessary input parameters to 
drive the test cases for the lower level modules as they are added. In addition a 
large number of stubs a.re required. With bottom up incremental testing, fewer 
stubs are necessary and the test driver is directly calling the module under test so 
that  it is easier to force the test conditions. 

Test  cases can be generated by studying the internal logic and paths of the rr~odr~lr  
(white box techniques) and by studying bouiidary conditions and cornbinat ions of 
inpiit classes (black box techniques). Autorriated tools can also be helpful for this. 

* .  I tic rc!;il (!fJwtivenfw of ;in autoniatcd trxt environiritbnt will lw determined by i t s  
dc:g r w  o f  in  tog ral,iori i I I  to t t i  ( 8  soft w ;mi d c! v v l o p  iiirii t. cn vi  ron riirn t. 'I'est iiiod 11 les 
tlavc to  be associat.cd with thf. apptopr ia t~~ sof twar( .  riiotlult~s i l l  tht. library. ('0111- 

rriarids shoiild be avail;hle to pt:rrriit tho library manager to autornatically retest 
appropriate modulos. It is very important to track errors discovered and to have 
the ability to generate statistics and status inforniation concerning the test process. 
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Coordination of Test Development: 

A number of GKS test routines have already been written by groups in Europe and 
in the U.S.A. . PRIOR intends to include these in its test suite, and then extend it 
to cover new areas. By making this activity as visible as possible we hope to avoid 
any duplication of effort. 

. 
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We w i s h  to apply formal v e r i f i c a t i o n  to program whicfr use real n u h e r  
arithmetic operations (hereinafter r e f e r r e d  to as mathematical 
F o m l  verificatim of a program P consis ts  of (1 ) c r e a t i n g  a ma e m  leal 
d e l  of P, ( 2 )  stating the desired proper t ies  of P in a formal l o g i c a l  
language, and ( 3 )  proving that the mathematical d e l  has  the desired 
wowties of step 2 using a formal proof calculus.  If the model f a i t h f u l l y  
embodies P, and the proper t ies  of s t e p  2 are a correct formalizat ion of the 
desired properties of P, the formal v e r i f i c a t i o n  provides a high degree of 
assurance that P is correct. 

EFF' - 

There are two p r i n c i p a l  d i f f i c u l t i e s  i n  formally ver i fy ing  mthematical 
programs: 

1. Hcw to model inexac t  machine arithmetic operations 

2 .  HOW to state the desired proper t ies  of 
the fact 
square root program does not compute the exact square root) 

mathematical programs i n  View of 
that such programs i n  general deliver inexact  r e s u l t s  (e.g. a 

1 W e l i n g  Machine Arithmetic 

Our s t a r t i n g  assumption is t h a t  machine arithmetic operations can be 
represented as the ideal real number operations followed by rourding. The 
opera t ion  of rounding is modeled by a cropping funct ion,  CR, f r a n  the real 
numbers (denoted by E) to E. The range of CR represents  the machine real 
numbers, sanetimes called the d e l  numbers. This w a s  t h e  approach taken i n  
[ l ] ,  [21, ard [31 and is m n s i s t e n t  with the proposed I= standard for 
f l o a t i n g  poin t  arithmetic [ 4 1 .  

0 

We will 
"the cmpping funct ion axicms": 

assme CR satisfies the following axians, h e r e i n a f t e r  r e f e r r e d  to as 

- Axiom 1: The range of Qi is f i n i t e .  

1 .  
i n  

2. 
D. 

3 .  

Mansfield, R . ,  A Ccmplete Axiomt iza t ion  of m u t e r  Arithmetic I to  appear 
t h e  Journal of Mathemtics and CanPuhtiOn 

Holm, John, Float ing Point Arithmetic and Program Correctness  Proofs,  Ph. 
t h e s i s ,  Department of Canputer Science, Cornell  Universi ty ,  August 1980 

u t a t i o n s ,  Realistic Mode1 of Flmt inq-Poin t  Canp Brawn, W. S., A Simple but 
Cmput i rq  Science Technical Report No. 83,  Eel1 Laboratories, Apr i l  1981 

4 .  A Proposed S t a d a r d  for Binary Floating Point Arithmetic, Draf t  10.0 of 
IEEE Task P754, Dec. 1982 0 
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- Axiom 3: ( R ( 0 )  = 0 

- Axian 4: [x  <= y <= 2 & (R(x) = cR(z)l ->  a R ( x )  = CR(y) 

The f i r s t  axian expresses the f a c t  that there are only f i n i t e l y  many machine 
-1 numbers. The M axian  says  that the r e s u l t  of a rounding opera t ion  
(i.e. a machine real nmber )  is unaffected by f u r t h e r  murdhg. Note that the 
second aian impl ies  that t h e  range of (R and the set of f i x e d  po in t s  of CR 
axe the same. The third axian  says  that 0 is a f ixed  p i n t  of CR, i.e. that 
0 is a machine real number. The fou r th  axian says  that i f  x and z round to 
the s a m  nur33er a d  y is between x and z then y r o d s  'CD the sam nunber as x 
and Z.  As usual  when stating axioms i n  f i r s t  order logic t h e r e  are implicit 
un ive r sa l  quant. if iers i n  f r o n t  of the formulas displayed as Axiorrs 2 through 
4. 

The cropping funct ion  axians are cons i s t en t  w i t h  the four  rounding nodes which 
the proposed IEEE Standard would r equ i r e  to be supported, namely r o u d i n g  to 
the nea res t  m c h i n e  real number, rounding towards 0,  rounding towards p lus  
i n f i n i t y  ard r o u d i n g  towards minus They are also consistent w i t h  
mumling away f m  zero, a d e  which is not mentioned i n  t h e  proposed IEEE 
Stardard. 

i n f i n i t y .  

0 We can d e r i v e  sane usefu l  oonsequences of the above axians: 

1.  a is mnotone,  i.e. x <=  y ->  a ( x )  < =  cR(y)  

2. There is no rnachine real between x and CR(x). 

Note tha t  the second s t a t emen t  does not imply that there is no machine rea1 
that is closer to x than (3R(x). Again, we do not wish to requ i r e  t h i s  because 
the proposed IEEE Standard would requi re  o the r  rounding mdes than rounding to 
the nea res t  machine real. 

2 Modeling Program Execution 

W e  mst embed the above ideas about d e l i n g  machine arithmetic i n t o  a l a r g e r  
node1 of program execution. We base cur formal d e l  of execution on a simple 
inform1 p i c t u r e  of program execution. We think of t h e  program as executing a 
s t e p  a t  a time. A t  each poin t  in time, the program (cx the machine it is 
running on)  is completely described by ( 1  1 t he  "point" i n  t h e  program w h e r e  
c o n t r o l  c u r r e n t l y  is, a d  ( 2 )  the values  of each of the program va r i ab le s .  
The program d e  determines the r e l a t i o n s h i p  between the va lues  of v a r i a b l e s  
a d  thc p i n t  of ccntrol before a given s t e p  ard a f t e r  t h a t  step. We w i l l  
assume, for the sake of s impl i c i ty ,  t h a t  a l l  va r i ab le s  have a def ined  va lue  
i n i t i a l l y ,  ht this value w i l l  be unspecified by the execut ion d e l .  I n  
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additicn, we w i l l  assume that the r e s u l t  of a t tempting to perfom a 
o a n p u b t i o n  which is undefined (e.g. d i v i s i o n  by 0) has a completely 
unspecified e f f e c t .  Tb use the d e l ,  it w i l l  usua l ly  be necessary to Prove 
that rn undefined canputations are attempted, and that the values  of program 
variables are no t  referenced before they are assigned to. 

b 
How do we represent  t h e  above informal p i c tu re  m t h e m t i c a l l y ?  We w i l l  
r ep resen t  "time" by the non-negative in t ege r s  (which we w i l l  hereinafter refer 
to as the natural numbers). The "points" where con t ro l  can r e s i d e  w i l l  be 
=presenteZSii$y by a f i n i t e  set. The data types of program v a r i a b l e s  other 
than real number va r i ab le s  w i l l  be represented by the c o r r e s p r d i n g  
mathematical objects, e.g. the data type of in t ege r s  w i l l  be represented as 
the mathematical integers. The real data type w i l l  be represented by the  
range of CR. 

The execut ion of t he  program w i l l  be represented by a c o l l e c t i o n  of func t ions  
g iv ing  the h i s to ry  of the  flaw of con t ro l  i n  the program and the h i s t o r i e s  of 
the values  of t h e  program var iab les .  Thus, t he re  w i l l  be a func t ion  from time 
(i.e. the na tu ra l  numbers) i n t o  the set of con t ro l  p i n t s  (which we w i l l  
denote by PC), and f o r  each program va r i ab le  v ,  a funct ion frcm time i n t o  the 
data type of v. 

The func t ions  represent ing  histories w i l l  be required to s a t i s f y  c e r t a i n  
carditions derived fran the program. For example, i f  X ,  Y and 2 are in t ege r  
program va r i ab le s ,  FX, FY and FZ the corresponding h i s to ry  func t ions ,  and a t  a 
certain t i m e  t m n t r o l  is a t  a p rq ram ins t ruc t ion  

X : = Y + Z  

then the funct ions must s a t i s f y  t h e  c r t d i t i o n  

FX(t + 1 )  = F Y ( t )  + FZ(t) 

For real var i ab le s ,  a l l  operations are the i d e a l  real opera t ions  followed by 
cropping. For example, if A,  B and C are real program va r i ab le s ,  FA,  FB and 
Fc t he  correspondiq h i s to ry  funct ions,  4 a t  a c e r t a i n  t i m e  t cont ro l  is a t  
a statement 

A : = B + C  

then the func t ions  mst s a t i s f y  t h e  condi t ion 
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3 Error K w n i t d e  i n  the We1 

The cropping func t ion  axians capture  c e r t a i n  q u a l i t a t i v e  properties of CR. 
They are not enrugh to do use fu l  v e r i f i c a t i o n ,  however, because they 
MthhJabout the s i z e o f  the error introduced by CR. For example, the 
croppirrg function axim are s a t i s f i e d  by the z e m  funct icn .  Thus, any 
Program W h i c h  we could v e r i f y  using only the cropping func t ion  axians would 
have to be carrect even when running on a machine whi& used the zero func t ion  
as its cropping function. Very few usefu l  mathematical p rogram would be 
correct i n  any sense on such a machine, and thus  wq could not  be able to 
v e r i f y  such programs s o l e l y  on t h e  b a s i s  of the cropping func t ion  aim. We 
need saw additional axians on the  s i z e  of t he  error introduced by CR. 

It is not clear, however, w h a t  kind of axioms to add. I f  we add axioms which 
give s p e c i f i c  numerical h r d s  on t h e  s i z e  of the  error i n  a c e r t a i n  range, 
then  any v e r i f i c a t i o n  w e  do  w i l l  only apply to machines that meet these 
numerical ccndi t ions .  For a machine t h a t  d i d  not  meet the corditions, any 
v e r i f i c a t i o n  done on the  b a s i s  of the  condi t ions  would be i n v a l i d ,  d e s p i t e  t h e  
f a c t  that m y  programs might still run c o r r e c t l y  on the machine. On the 
other hand, scme m c h i n e s  which met the conditions would probably a c t u a l l y  
meet much mre demadirq conditions.  There could be programs which run 
o o r r e c t l y  on such machines which we cannot prove correct because cur axioms do 
not r e f l e c t  the high degree of accuracy i n  t h e  mchine .  

One s o l u t i o n  to t h i s  d i l e m  would be to add non-specific numerical b u n d s  on 
the error. I n  o the r  wards, add a symbol ( s a y ,  'le'') and add an axian  l i k e  ' ' the 
percentage error b e t m n  x and CR(x) is always less than e." One could then 
v e r i f y  s ta terrents  a b u t  the accuracy of mathemt ica l  programs i n  t e r n  of e. 
For example, if P were a program to mnpute  square rmts, one might t r y  to  
v e r i f y  a staierrrent l i k e  "the percentage error between P(x) and the square root 
of x is 5*e. If one then wanted a c e r t a i n  degree of accuracy fm P, one 
could so lve  f o r  the degree of accuracy i n  CR that would be necessary to 
achieve the des i r ed  accuracy f r an  P. 

There are s e v e r a l  problems with this apprcach. F i r s t  of a l l ,  i t  id v q  
cos t ly .  the problem of 
genera t ing  and proving statements of t h e  kind mentioned above i n  a mechanical 
proof system is i n t r a c t a b l e  i n  terms of both the a m u n t  of m p u t a t i o n a l  mer 
and t h e  a m u n t  of human i n p u t  required. Secord, i n  some s i t u a t i o n s  it f o r c e s  
u s  to do an analysis t h a t  is more d e t a i l e d  than necessary. Many errors i n  
mathematical programs occur a t  a m c h  lower l e v e l  of numerical oomplexity. 
For example, ZBFU!" is a Fortran subroutine f r a n  the  IMSL l i b r a r y  which is 
supposed to f i n d  a zero of a user-defined func t ion  F given a p a i r  of endpoints 
A d B such that t-he values  of F a t  A and B are of oppos i te  I t  does 
this by gradual ly  roving the endpoints inward, always making sure that the 
values of F a t  I n  the process of 
t h e  ccmputation, i t  genera tes  various pairs of real va lues  X and Y which it 
must test to see i f  F(X) and F(Y) are of omsite sign. I t  does so by 

With present technology i n  a u t m t i c  theorem proviry,  

sign. 

the  cu r ren t  endpoints are of opposite sign. 
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'* r m l t i p l y i r q  F(X) ard F(Y) together  and tes t ing  whether the r e s u l t  is negat ive 
or not. This is an inoorrect (not to mention i n e f f i c i e n t )  test, s i n c e  it j s  
possible to have F(X) axld F(Y) be snall n h r s  of opposite sign whose product 
is 
T h i s  muses to act as if F ( X )  and F ( Y )  are of the same s i g n ,  g iv ing  
i n c o r r e c t  r e s u l t s  i n  sane cases. TNS prograrrrning error is n o t  "numerical" i n  
M b t e ,  but is inherent  i n  the notion of inexact  (although "close'') 
canputa t ion. 

small  that underflow causes the machine to ocmpute 0 f o r  their prcduct. 

b 

What we would l ike  is a model of machine arithmetic which captures  t h e  idea of 
"close" but  inexact  computation without r e f e r r i n g  to s p e c i f i c  numerical 
Constants. I n  t h e  next  s e c t i o n  w e  present  such a nodel. The nodel is based 
on an alternate approach to real a n a l y s i s  called non-standard ana lys i s .  

4 Non-standard Analys is  

Calculus was developed i n  the eighteenth century bjsed on the not ion of 
i n f i n i t e s h l s .  These w e r e  p o s i t i v e  e n t i t i e s  dx smaller than any a c t u a l  
p o s i t i v e  real kut not  0. F'ur themre ,  they obeyed the laws of ordinary real 
arithmetic so t ha t  one could carry o u t  ordinary a l g e b r a i c  m i p l a t i o n s  l i k e  

y = xA2 

y + dy = (x + dX1-2 

(x + dX1-2 = xA2 + 2 * x * dx + (dX)^2 

dy = 2 * x * dx + (dxl-2 

dy/dx = 2 * x + dx 

I n  p a r t i c u l a r  the d e r i v a t i v e ,  dy/dx, was t h e  a c t u a l  q u o t i e n t  of two 
inf  i n i  t e s h l s  . 
Attempts i n  the nineteenth century to j u s t i f y  working w i t h  these extendo3 
reals were not  successful  and a d i f f e r e n t  approach and proof technique i n  
terms of limits was adopted instead (the so-mlled e p s i l o n / d e l t a  method.) 

I n  the e a r l y  60's log ic ians  shmxxl how to j u s t i f y  working w i t h  a c t u a l  
inf  i n i t e s i m a l s  using so-called %on-standard rrPdels of t h e  reals." These 
d e l s  are ordered a lgebra ic  s t r u c t u r e s  which have a l l  the same a l g e b r a i c  and 
ordering p r o p e r t i e s  of t h e  standard real numbers, and which conta in  the 
standard rei1 numbers, b u t  which also contain a d d i t i o n a l ,  non-standard 
nwnbers. Doing real a n a l y s i s  by means of such non-sk-ndard models is called 
non-starrdard ana lys i s .  
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4.1 Non-standard tbdels 

What exactly do w8 rean by a "non-standard d e l "  of sane mathematical q e c t  
l ike  tha real nunbers? F i r s t  of all, by "mathemtical owed" we W i l l  l u s t  
mean a non-empty set. Before we give a precise statement of "non-standard 
d e l ' '  we rmst discuss the notion of a first-der statement about a 
m a d t i c a l  object. 

SuFpose we have a mathemt ica l  object M. A term of fi is an a t p r e s s i o n  Which is 
of one of the folluwing forms: 

An element e of M 

-- 

1. 

2. f ( t l , . . . , t n )  where f is an n-ary funct ion frcm M i n t o  M and t l , . . . , t n  

Thus, if M is t h e  real numbers, then 0, 1 and 1 + exp(5) are terms on M ( w h e r e  
exp stands f a r  the "e- to- tk-x" f u n c t i m  a d  + is the u s u a l  additicn f u n c t i m ,  
written in f ix ) .  

are p r e v i a s l y  def ined terms of M. 

A first-order statement about M is a statement of one of the following forms: 

1 .  p ( t l , . . . , t n )  where p is an n-ary predicate on M 

2 .  A statement  b u i l t  up frun f i n i t e l y  many previously constructed 
f i r s t - o r d e r  staterrents by the use of logical connectives (e.g. "not", 
"and" , "or" , "if  -then-else" , etc. ) 

A statement  of the form "for a l l  x i n  M, . . . ' I  w h e r e  ... is a previously 
mnstructed f i r s t - o r d e r  staternent involving the variable x. 

4 .  A S b t e K e n t  of the form ''there exists x in M such that . . ." where . . . is 
a p r e v i m s l y  constructed first-order s t a t e n t  involving the variable 
X. 

3. 

The following are first-order statenw?t.s about t h e  real numbers: 

not (5 = 1 )  

f o r  a l l  x i n  the real numbers, f a r  a l l  y i n  the real numbers, 
x + y = y + x  

t h e r e  e x i s t s  x i n  the real numbers such t h a t  far a l l  y in the 
r a l  numbers, x*y = y 

t h e r e  exists x i n  the real numbers such that x*x = -1 
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Notice that the first four statements are true of the real nunbers ,  whereas 
the f o u r t h  is f a l s e  of the real numbers. A f i r s t - o r d e r  statement a b u t  M need 
not be a true s ta tmt  about M; it need merely be o f  a certain form. 

\ 

In  general, there w i l l  be sane f a c t s  about a g iven  mathematical object M which 
can be expressed as f i r s t -carder  s ta tenrents  and some which cannot. The f i r s t  
four examples above are f a c t s  a b u t  the real numbers which are expressible a s  
first-arder statements. A f a c t  a b u t  t h e  real nunbers  which is not  
expressible as a first-order s t a t emen t  is t h e  f a c t  that eve ry  non-empty set of  
real nunbers w h i c h  has an upper  b u n d  h a s  a least upper baund (this prope r ty  
is called c a n p l e t e n e s s ) .  This s t a t emen t  is n o t  a f i r s t - o r d e r  s t a t emen t  a s  
w r i t t e n  because  it r e f e r s  to sets of  reals rather than j u s t  i n d i v i d u a l  reals. 
Saw s ta tenrents  which r e f e r  to sets of e lements  or o t h e r  h igher -order  
Structures t u r n  o u t  to be e q u i v a l e n t  to f i r s t - o r d e r  For example, 
the statement "for eve ry  bounded set s of  real nunbers ,  t h e r e  is a real number 
x that is n o t  i n  S" is n o t  i n  t h e  form of  a f i r s t - o r d e r  s t a t emen t ,  b u t  it is  
e q u i v a l e n t  to the f i r s t - o r d e r  s t a t emen t  " f o r  a l l  x i n  the real numbers, there 
exists y i n  the r a l  numbers such t h a t  x < y." I t  can be shown that the 
c a n p l e t e n e s s  p r o p e r t y  is n o t  e q u i v a l e n t  to any f i r s t - o r d e r  s t a t e r r en t .  

We w i l l  n m  d e f i n e  w h a t  we  mean by a non-standard model. 
set M (e .g .  the set of real numbers). A non-standard d e l  of  M consists of :  

s t a t emen t s .  

Suppose we have sane 

1.  A set M' 

2 .  For each element  e of M, a corresponding element  e' of  M' 

3 .  For each n-ary f u n c t i o n  f r a n  M into M, a cor responding  n-ary f u n c t i o n  f ' 
from M' i n t o  M' 

4 .  For each  n-ary p r e d i c a t e  p on M, a corresponding n-ary  p r e d i c a t e  p '  on 
M' 

such t h a t  eve ry  f i r s t - o r d e r  s t a t emen t  which is t r u e  of  M is t r u e  of  14' when 
t h e  e lements ,  f u n c t i o n s  and p r e d i c a t e s  i n  t h e  s t a t m t  are i n t e r p r e t e d  as the 
corresponding e lements ,  functions and p r e d i c a t e s  of M ' .  For example, suppose 
R '  i s  a non-s ta rdard  d e l  of the reals. L e t  + '  deno te  the b ina ry  f u n c t i o n  on 
R '  c o r r e s p n d i n g  to the a d d i t i o n  func t ion  on  the reals. S ince  + is 
c m u t a t i v e ,  ard s i n c e  c m u t a t i v i t y  of + is e x p r e s s i b l e  as a f i r s t - o r d e r  
s t a t emen t  (see t h e  examples above ) ,  + '  must be m u t a t i v e  on R ' .  On t h e  o t h e r  
h a d ,  H' need n o t  have t h e  ccmpleteness  p rope r ty ,  and t h e r e  are non-s ta rdard  
&els of t h e  reals which a r e  no t  a m p l e t e .  

W e  w i l l  ca l l  t h e  e lements  of M '  which correspond to e lements  of M t h e  s t a r d a r d  
e lements  of  M'. W e  can i d e n t i f y  e lements  of  M w i th  their ocr responding  
e l emen t s  of M ' ,  and t h u s  speak of M as be ing  a subset of M ' .  Under this 
i d e n t i f i c a t i o n ,  f o r  each func t ion  f and each p r e d i c a t e  p on M, the 
cor responding  f '  and p' on M' is ex tends  f and p r e s p e c t i v e l y .  We w i l l  call a 
non-standard d e l  M' of a mathematical  object M a prom n o n - s t x d a r d  d e l  
of M i f  t h e r e  is an e lement  x of  M' which is n o t  i n  M. 

I t  can be s h m  ( w e  w i l l  n o t  g i v e  t h e  proof h e r e )  that evsAy i n f i n i t e  
mathematical object M has  a proper  non-standard d e l  MI. The same does n o t  
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hold for finite mthernatical objects. The reason is sinple. suppose  
M = {el ,...,en), a d  M' is a nm-standard d e l  o f  M. It is a true f i r s t - o r d e r  
statement about M that "for all x i n  M, or x P e 2  or .., or x = en'' 
(the ccnjunctian is finite).  Therefore, the statement " f o r  a l l  x i n  M', 
x - el or x - e 2 '  or ... or x = en"' is t r u e  of M' , b u t  this says tha t  the 
only elements of M' are the stardard elemnts. 

x = el 

4.2 Ncn-standard Wels of  the R a l s  

What does a proper non-standard d e l  of  t h e  reals look l i k e ?  I t  can be s h a m  
that  every proper n m - s w a r d  d e l  of  the reals amsists of  the stardard 
real numbers p l u s  the fo l lowing  three k inds  o f  non-standard numbers: 

1.  

2. 

3. 

I n f i n i t e s i m a l s .  These are n h r s  which are n o t  
than any standard non-zero real n-. 

2 hu t  which are smaller 

I n f i n i t e  NunberS . These are nunbers which are larger than any s t anda rd  
real number. There a ~ s  both p o s i t i v e  and n e g a t i v e  i n f i n i t e  numbers. 
Every prcpx non-stardard d e l  of  the reals must have i n f i n i t e  numbers 
as w e l l  as i n f i n i t e s i m a l  numbers i n  order to s a t i s f y  the a l g e b r a i c  
p rope r ty  that eve ry  non-zero number has  a m u l t i p l i c a t i v e  inverse. The 
m u l t i p l i c a t i v e  i n v e r s e  of a non-zero i n f i n i t e s i m a l  is an i n f i n i t e  
number. 

F i n i t e  Non-standard N u m b e r s .  These are numbers of t h e  form x + i where x 
is a non-zero standard real and i is an  i n f i n i t e s i n n l .  Such numbers are 
n e i t h e r  i n f i n i t e s i m a l  nor  i n f i n i t e ,  b u t  are n o t  standard e i t h e r .  

I n  t h e  o r i g i n a l  fo rmula t ion  of  c a l c u l u s ,  i n f i n i t e s i m a l s  were i n f o m l l y  
thought  of as non-zero real nunbers which w e r e  i n  sane s e n s e  " a r b i t r a r i l y  
small". Thus, t h e  n o t i o n  of i n f i n i t e s i m a l s  lerds i t s e l f  very w e l l  to modeling 
m n p u t a t i o n  which is inexac t ,  but whose inexac tness  can be tiken to be 
arbitrarily small. 

5 Non-standard Models of Execution 

We w i l l  i n c o r p o r a t e  the idea  of machine real operations which d i f f e r  
i n f i n i t e s i m a l l y  f r u n  the ideal o p e r a t i o n s  by us ing  non-s ta rdard  execu t ion  
d e l s .  A non-standard execu t ion  model w i l l  be a r e p r e s e n t a t i o n  of  program 
execu t ion  l i k e  that described i n  s e c t i o n  2 ,  b u t  w i t h  the standard mathematical 
objects r e p l a c e d  by non-standard objects. What e x a c t l y  does t h i s  mean? 

F i r s t ,  t ime w i l l  be rep resen ted  by a proper  non-standard d e l  of  t h e  n a t u r a l  
numbers. A proper non-standard d e l  of the n a t u r a l  numbers consists of the 
s b d a r d  n a t u r a l  nurrbers w i t h  i n f i n i t e  e l e n t s  added. Thus,  the h i s t o r y  
f u n c t i o n s  w i l l  be f u n c t i o n s  whose dana in  is a proper  non-standard d e l  o f  the 
n a t u r a l  numbers. 

- .  



Semnd, a l l  data types of program variables other than real v a r i a b l e s  w i l l  be 
represented by proper noti-standard d e l s  of the standard data types (if 
proper mn-standard d e l s  exist. ~ a r  example, the data type "kcohm" is 
finite and t h e r e f o r e  has no proper non-standard models. F i n i t e  data types  
w i l l  be represented i n  non-standard d e l s  of execution by the stardard 
of the data type). For example, the data type oonsisting of the p o s i t i v e  and 
negative integers must be represented by a proper non-starrlard d e l  of t h e  
integers (which j u s t  looks l i k e  the standard i n t e g e r s  w i t h  both p o s i t i v e  and 
negative i n f i n i t e  nLPnbers added). 

What a b u t  the data type of machine real numbers? I n  s e c t i o n  2 we obtained 
the machine real data type by chocsing a cropping funct ion on the ideal reals 
and taking its range. We cannot replace t h i s  type by a proper nrm-standard of 
i t s e l f ,  because by t h e  f i r s t  c roppim funct ion axiom, this set is f i n i t e  and 
so has no proper non-standard models. Suppose instead that we start with a 
prcper non-stardard d e l  of the reals R' and a funct ion CR f r a n  H' i n t o  R '  
s a t i s f y i n g  the cropping functior. axians and the additional axiom (called the 
''error axia-n") t h a t  f o r  a l l  f i n i t e  x i n  R ' ,  CR(x) - x is i n f i n i t e s b l .  This  
axian f o r m l i z e s  the statement  t h a t  on a l l  numbers that are not  "large" ( i . e .  
n o t  i n f i n i t e ) ,  the roundoff error is "small" (i.e. i n f i n i t e s i m a l ) .  We w i l l  
use the n o t a t i o n  ''x == y" to stand f o r  ''x - y is inf in i tes imal . "  

Unfortunately,  there are no such c r o w i n g  functions.  I n  urd= f o r  the error 
aXian  to be met, t h e  range of CR must be i n f i n i t e ,  which c o n t r a d i c t s  t h e  f irst  
cropping f u n c t i m  axiom. 

Hm can w e  reso lve  t h i s  inconsistency? There are d e f i n i t e  cases i n  which WE! 

make use of the  f i r s t  cropping funct ion axicm i n  v e r i f i c a t i a n ,  so w e  cannot 
simply -on it. What w e  w i l l  do instead is, r a t h e r  t h n  assuming t h a t  CR 
s a t i s f i e s  the f i r s t  cropping Lunction axiom, assure t h a t  s a t i s f i e s  all 
f i r s t - o r d e r  s ta tements  implied by the f i r s t  cropping funct-on axian. I t  can 
be s h a m  that t h e  f i r s t  cropping function axian is n o t  equivalent  to any 
f i r s t - o r d e r  statement,  so t h i s  is a t r u e  weakening of our  set of axioms. I n  
addi t ion ,  it can be shckn? that t h e  r e s u l t i n g  weaker set of axim is  
cons is ten t .  The f i r s t - o r d e r  consequences of the first cropping funct ion axiom 
w i l l  be mre than enough to v e r i f y  mst mathematical programs. I n  sumary, we 
w i l l  r epresent  t h e  m c h i n e  r e a l  data type i n  a nm-standard model of exerut ion 
a s  the  rarqe of a function CR f r a n  a rlon-standard d e l  of t h e  reals i n t o  
i t s e l f  such that CR satisfies cropping funct ion axioms 2 throuTh 4 ,  the error 
axion given &vel d a l l  f i r s t - o r d e r  statements implied by t h e  f irst  
cropping funct ion axicm. 

6 S p e c i f y i w  Matheratical  Proqrams 

tim do w e  state the proprx t ics  of m t h e w t i c a l  programs w e  want to prove'? 
s u p p o s e  w e  rcstrict oursclvcs  to m n s i d e r i r q  programs whose purpose is j u s t  to 
m p u t e  s c m r 3  real-valued funct ion.  If f is a real-values  funct ion of n 
arguments, and P is a prcyran to ccmpute f with parameters A1 ,...,. 4r-1, w e  can 
state t h e  s p e c i f i c a t i o n  of P i n  terms of the above formalism simply as !'for 
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a l l  inputs xl,...,xn, p ( x l , . . . ,  xn) == f (x1 ,  ..., Xn)" or, in s l i g h t l y  n-ore 
detail, "fur a l l  i npu t s  xl ,.. .,xn, i f  P is executed with the i n i t i a l  va lues  Of 
A1 t ,An beirrg XI,. . . ,xn respec t ive ly ,  then  P w i l l  eventua l ly  te rmina te  with 
output == f (XI ,..., xn) .'I ~n terns of the above f o m l i s m ,  P has terminated a t  
a time t if Wt) = stop w h e r e  "stop" is a con t ro l  p i n t  a t  the erd of t h e  
Program. 

7 A n E h n p  le Ver i f i ca t ion  

To i l l u s t r a t e  t he  use of the model, we w i l l  ve r i fy  a program which ccmputes 
the square root function by Newton's methcd. The proof w i l l  be infomlg We 
w i l l  denote the  ideal square root of a number x by root (x)  . 
Newton's methcd begins with an i n i t i a l  "guess" a t  the  square root. The guess 
is then r e f ined  by an i t s r a t i v e  process. A t  each s t e p ,  t h e  cu r ren t  guess g is 
replaced by ( g  + ( x / g ) ) / 2  (where x is the nunber whose square root is being 
ccmputed). The only facts abou t  Newton's methcd we w i l l  need to know f o r  the 
v e r i f i c a t i o n  are that i f  x is non-neqative and the  i n i t i a l  mess is biqqer - - -  
than root (x) ,  then: 

1. All succeeding guesses w i l l  be bigger than r a c ( x ) .  0 
2. Each new guess w i l l  be less than the previous guess. 

PlS WE now g ive  t)li! prcyrm.  
for machine real operations "doubled , e.g. machine real additim w i  1 be 
denoted by "++", to d i s t ingu i sh  machine operations fran i d e a l  opera t ions  
(which w i l l  be denoted by the usua l  "urdoubled" symbols). The value i n  R!SULT 
is output when the program terminates. 

We w i l l  a d T t  the convention of wr i t i ng  t h e  s 

The program is: 

RESULT := X ++ 1 

IF R.E!3ULT ** RESULT <=  X 

RESULT := (RESULT ++ (X//REULT))//L 
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Note that the conditions for leaving the  loop are not the  kind of oonditions 
me usually sees in  program of this type. The usual appraach to terminating 
i terat ive processes of this type involves e i t h e r  terminating when a ce r t a in  
degree of accuracy is reached, or w h e n  a ce r t a in  bound a the number Of 
iterations is reached, or both. I n  SQRT, the i t e r a t i o n  is t e r m i ~ t e d  when the  
iterative process in the machine ceases to act l i k e  the ideal Newton's method 
in one of the two ways mentioned above. 

We will ncw ver i fy  that i f  SQRT is executed with the in i t i a l  value of X 
non-negative a d  f i n i t e ,  then execution eventually terminates with 

RESULT == root(the i n i t i a l  value of x )  

W e  w i l l  perform the ver i f ica t ion  by establ ishing a series of lenmas, leading 
up to the  result we w a n t .  

LemM: i f  x an3 y are non-negative and x == y ,  then root (x)  == r o o t ( y ) .  

Proof: the proof breaks i n t o  2 cases: 

-1: x and y are infinitesimal.  The square of a n o n - i n f i n i t e s b l  number 
is non-infinitesimal, so root (x)  and root (y)  must therefore  be inf ini tes imal ,  
and thus the difference between them is also infinitesimal.  

- 

Case 2 :  either x or y is not infinitesimal.  Since the  two numbers d i f f e r  by 
an inf ini tes imal ,  i f  one is not inf ini tes imal  the  other is also not. Since 
the square of an inf ini tes imal  is inf ini tes imal ,  roo t (x)  ard root (y)  are also 
non-infinitesimal. By algebra,  w e  have 

x - y = ( root (x)  + r co t (y ) )* ( roo t (x )  - roo t (y ) )  

Since the le f t  side is inf ini tes imal  and the first fac tor  of the  r igh t  s ide  is 
not ,  the secord factor of the r igh t  s ide  rmst be infinitesimal.  

Lema 1:  Whenever (RESULT ++ (;1//REsuLT))//2 is ccmputed, E U L T  is not 0. 

Proof:  S u p m e  not. L e t  t be the earliest t im such t h a t  K ( t )  is a t  a 
statement Aere (RESULT ++ (X//WULT))//2 i s  m p u t e d  and RESULT = 0 a t  time 
t. Prior to t-, the prqram must have been executing normally, s ince  d iv is ion  
by 0 is the only except ioml mndi t ion  that can arise (we are ignoring 
exceptional cordi t ions such as STCRAGE_ERROR or overflcw which cannot be 
analyzed on the basis of the  prqrm's t e x t ) .  

The only points i n  the p r q r m  where (RESULT ++ (X//RESULT) ) / / 2  is m p u t e d  
a r e  i n  the second conditional i r s i d e  the loop and i n  the subsequent assignment 
statement. Since t is the earliest tine when a d ; / i s ion  by 0 is attempted, 
a d  program execution before t is nornul, we can conclude that: 

B.1.3.13 



1. 

2. 

Control a t  time t must be a t  the s e d  0 3 n d i t i O M l .  

Control a t  time t - 1 must be a t  the  f i r s t  conditional with RESULT = 0. 

3. X a t  time t - 1 nust be negative (by cmming function a i m  3 ,  if 
RESULT is 0 then  EUSULT ** RESULT is also  0). 

But X is a s s 4  to be m-nega t ive  i n i t i a l l y ,  and since no assignrrents to X 
can have taken place i n  the  course of n o m 1  execution pr ior  to t, X must k 
nm-negative a t  t im t - 1 ,  a contradiction. 

W e  can therefore  assune for the rest of the 
normally a t  a l l  times. 

l m s  that the  program executes 

LemM 2: The value of X is always the same as the i n i t i a l  value. 

Proof: t r i v i a l ,  s ince  there are no steps i n  the program which assign to  X. 

LpmM 3: SaRT halts. 

P r o o f :  Suppose not. In  t h i s  case, the set of times t where the value of 
RESULT decreases fran time t to  time t + 1 has no upper bound (else a t  saw 
point control  would leave the loop a t  the second conditional). This f a c t  can 
be expressed as a first-order statement using the  history function for RESULT 
(call it FRESULT) as follows: "for a l l  tims t there e x i s t s  a tine t '  such 
that t < t '  and FRESULT(t' + 1 )  < FRE"LT( t ' ) . ' '  Humere, the negation of this 
statement is a f i rs t -order  statemmt which is implied by the f i r s t  cropping 
function axiom, a contradiction. 

LemM 4: After the  i n i t i a l  assignment to RESULT, the value of RESULT is always 
>= 0 and <= x ++ 1. 

P m f :  The proof is by induction on t im ( i .e  induction on the number of s teps  
tha t  have been executed). Imnediately a f t e r  the i n i t i a l  assignment to RESULT, 
RESULT = X ++ 1 so c e r t a i n l y  RESULT <=  X ++ 1. W e  must therefore establish 
that 0 < =  x ++ 1 .  

Since X and 1 a r e  f i n i t e ,  X + 1 is f i n i t e  and SO by the error a i m ,  
X ++ 1 = CR(X + 1 )  == X + 1 .  1 is not an inf ini tes imal ,  and X is non-negative, 
so X + 1 is a t  least distance 1 frcm 0. Since rounding only introduces a n  
in f in i tes imal  error, a d  the distance between X + 1 an3 0 is not 
inf ini tes imal ,  X ++ 1 cannot be 0. 

To complete the induction, w e  must  show that a t  every step i n  execution, i f  
0 < =  RESULT < =  X ++ 1 is true before the step,  then i t  is h e  a f t e r .  For 
execution steps which a r e  not executions of the assignment statement ins ide  
t h e  low, this is t r i v i a l ,  s i n e  no other statemcnt chancjes the value of 
RESULT. Suppose a cjiven s t e p  is a n  execution of the assignment statement 
i n s i d e  the loop. F i r s t  of a l l ,  t h i s  ~ n s  that control rmst lave passed 
throught the preceding condi t ioml ,  so the next value of RESULT must be less 
than the  p rev ims  value, so i f  RESULT is <=  X ++ 1 before the assignment then 
the  same is t rue  af ter .  S e c o d ,  as shown i n  L a m  2 ,  i n  order for  control to 
b v e  reached t h i s  s t a t a n t  a t  a l l ,  RESULT must be non-zero, so it is s t r i c t l y  
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positive. The value of X is m-negat ive .  Therefore, s ince CX Of a 
non-negative number is non-negative, (RESULT ++ (X//RESULT))//2 N S t  be 
non-negative. This canpletes the inducticn. 

5 :  RESULT is always f i n i t e .  

Prclof: S i n e  0 and X ++ 1 are f i n i t e  ard RESULT is always between them, RESULT 
is also f i n i t e .  

When SCBT terminates, RESULT == r o o t ( i n i t i a 1  value of X I .  

mf: We w i l l  denote the value of RESULT a t  termination by R. The proof 
breaks into three cases: 

Case: R ** R = X. By Lermra 5 ,  R is f i n i t e  so by the error axiom, 
R * R == R ** R = X = i n i t i a l  value of X and the conclusion follows by 
0. 

Case 2: R ** R < X. Claim: R * R < X. I f  not, then R * R >= X, so by the 
mnton ic i ty  of CR, R ** R = CR(R * R) <=  CR(X) = X, a contradiction. The 
i n i t i a l  value of RESULT has square > X, so the assignment statement inside the 
loop must have been executed a t  least once before termination, Therefore, 
there e x i s t s  a previcus value of RESULT, call it RP, such that 
R = (RP ++ (X//RP))//2 <.W and RP ** RP > X. By the same reasoning as a h v e ,  
the seoord staten-ent implies tha t  RP * RP > X. Therefore o < X/RP < RP SO X/RP 
is finite, so (RP ++ (X//RP))//2 == (Rp + (X/RP))/Z. But the l e f t  s i d e  is less 
than r o o t ( x ) ,  while the r i g h t  s ide is greater  than r m t ( x )  by property of 
(ideal)  Newton's method. When two numbers w h i c h  d i f f e r  by an inf ini tes imal  
are on e i t h e r  s ide of a fixed nurrber, they each d i f f e r  f r an  that fixed number 
by an infinitesimal.  

0 
This establish the conclusion. 

use 3: R ** R > X. In this case, the prcgram mst have terminated because 
R <= ( R  ++ (X//R))//2. The assumption of the case implies t h a t  R * R X as 
above, so 0 < X/R < R so X/R is f i n i t e ,  so (R ++ (X//R))//2 == (R + (X/R))/2. 
The left s ide  is >=  R, while  the right side is < R by property of ( i d e a l )  
Newton's methcd. Therefore, R - ( ( R  + (X/R))/2) is i n f i n i t e s h 1 .  
Rearranging algeht-aically, we get (R*R - X)/(2*R*R) is infinitesimal.  The 
denomimtor is f i n i t e ,  so the numerator must be infinitesimal.  The conclusion 
follaws frcm LmQm 0. 

8 The Asymptotic Internretation 

What does ver i f i ca t ion  of a rri2thcnutical program executing over a non-standard 
&el of the rmls tell u s  a b u t  actual execution m a standard machine? This 
question is s j n i l a r  to the question " w h a t  does a proof i n  non-standard 
analysis  involving inf ini tes imals  s h w  abou t  a n a l y s i s  i n  the standard reds?" 
We w i l l  explain h e u r i s t i c a l l y  h m  non-standard analysis  proofs relate to 
stanriard analysis,  argue by analogy that the same r e l a t ion  holds between 
ve r i f i ca t ion  of non-standard execution and execution on a standard mchine.  

a d  
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It can (and has) been proved that the analogy is a c t u a l l y  valid, bu t  the proof 
is k y d  the scope of this paper. 

Consider t h e  non-standard a n a l y s i s  proof tha t  the d e r i v a t i v e  of t h e  xn2 
f u n c t i a n  is 2*x. It g ~ e s  as follows: take an a r b i t r a r y  i n f i n i t e s i m l  i and 
axnpute ( ( x  + 11-2 - x A 2 ) / i .  The r e s u l t  is 2*x + i. n u s ,  the va lue  of the 
d i f f e r e n c e  quotient far any in f in i t e s ima l  is only  in f in i t e s i rna l ly  d i f f e r e n t  
fm 2*x. This is a c t u a l l y  a proof that t h e  standard xn2 func t ion  has 
derivative 2*x i n  t h e  usua l  sense,  although it takes  sane mathematical logic 
to wove the connection. 

What does it mean to say that the  d e r i v a t i v e  of xn2 is 2*x i n  standard 
ana lys i s?  It means that the l i m i t  of the expression ( x  + h1-2 - x n 2 ) / h  as h 
goes to 0 is 2*x. Thus, a non-standard a n a l y s i s  proof about numbers being 
in f in i t e s i rna l ly  d i f f e r e n t  e s t a b l i s h e s  a standard f a c t  a b u t  behavior of an 
express ion  as a c e r t a i n  quan t i ty  g e t s  smaller and smaller. 

The same r e l a t i o n  holds between ncn-stardard and stardard execution. Our 
proof that i f  x is non-negative and f i n i t e  then SQRT(x) == r o o t ( x )  actually 
establishes t h a t  i f  w e  run SQRT on a sequence of machines whose CR is more and 
ny>re Prec i se ,  the output of SQRT(x) w i l l  converge to r o o t ( x ) .  More gene ra l ly ,  
i f  w e  have any real-valued i d e a l  function f and a program F and we can prnve 
i n  t h e  non-standard formalism that f o r  a l l  f i n i t e  x i n  t h e  donain of f ,  
F ( x )  == f ( x )  then this w i l l  e s t a b l i s h  that i f  w e  run F on a sequence of more 
and mre p r e c i s e  machines, the output of F ( x )  w i l l  converge to f ( x ) .  To put 
it another way! ye can ob ta in  any degree of prec is ion  i n  F ( x )  by ccmputing 
F ( x )  on a s u f f i c i e n t l y  precise mchine .  

0 
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1 Introduction 

The Ada Test and Verification System (ATVS)l is an integrated set of 
software tools for testing, maintaining, and documenting Ada programs. 
The objectives of the ATVS are to improve the reliability and maintainability 
of Ada programs. GRC performed the research and analysis leading to the 
specification of ATVS requirements and its high-level design2 . 
1.1 Background and Overview 

Software testing, verification, validation, and certification are critical 
software development problems facing NASA. To overcome these 
problems, NASA has invested large amounts of time and money to correct 
and certify systems only to find that, when deployed, they often behave 
erratically or produce incorrect results. Spending more time and money on 
exhaustive testing won’t solve the problem either since most software 
programs found in mission critical systems (such as the Space Station) art. of 
such size and complexity that no amount of testing can guarantee completely 
correct, error-free performance. The objective then is to make the testing 
process as effective as possible by providing computer-aided assistance to the 
software engineer to help them discover the greatest number of errors for 
every hour spent testing. 

@ Ada is a registered trademark of the U.S. Government Ada Joint 
Program Office (AJPO). 
1 This work was performed under Rome Air  Development Center Contract 

2 Ada Test and Verification System (ATVS): Final Report, General 
Research Corporation, CR-6- I30 1, September 1985. 
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A proven approach to software testing is the use of Automated 
Verification Systems (AVS). This technology was pioneered both by NASA 
and Rome Air Development Center, and GRC has participated actively in 
these efforts. For NASA, GRC developed an AVS for the AED language. 
For RADC, GRC developed AVS's for FORTRAN, COBOL, and JOVIAL 
573 (FAVS, CAVS, and J73AVS). The ATVS represents the logical 
evolution of AVS technology in support of the Ada programming language. 

Ada provides a high-level programming language with advanced 
capabilities addressing reliability issues (e.g., strong data typing, exception 
handlers, information hiding, etc.). However, the Ada language alone 
represents only a partial solution to software development problem 
confronting NASA: the full benefit of Ada to Space Station Software 
development will be realized through the synergistic interaction of the Ada 
language, the Software Development Environment, and supporting software 
tools (e.g., ATVS). 

1.2 Operational Concept 

Figure 1.1 illustrates the ATVS high-level operational concept: 

1. Ada source code is submitted to the ATVS for Static Analysis 
(e.g., package dependencies, program call tree, global symbol 
information, data flow anomalies and errors, unreachable code, 
potential task deadlocks, etc.). In response to the Static analysis 
reports and displays, the user makes whatever corrective actions 
are required and repeats the process until there are no statically 
detectable errors in the source code. 

2. The user's Ada source code is then Instrumented with run- 
time data collection probes which capture execution information 
(such as execution coverage, performance timing, and task state 
activity) for subsequent analysis and reporting. 

3. The instrumented Ada source code is then compiled, linked, 
executed (with user supplied test data) with the ATVS 
instrumentation probes collecting run-time execution 
information. Assertion violations are reported to the user who 
may then make corrective actions and repeat the process. 

4. The run-time execution data collected by the ATVS 
instrumentation probes is analyzed producing execution 
coverage, timing, and task state reports. Based on these reports 
the user takes corrective actions such as modifying the test data 
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Figure I . I .  ATVS Operational Concept. 
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to effect execution covemge or modifying the source code to 
improve performance, eliminate unanticipated task interactions, 
and correct logic or design errors, 

As suggested by the previous scenario, application of the ATVS is 
focused on the coding and testing phases. Figure 1.2 illustrates the role of the 
ATVS in the DOD-STD-2167 software development cycle: namely, Coding 
and Unit Testing, CSC Integration and Testing, CSCI Testing, and 
Maintenance Phases (while the Maintenance phase is not explicitly described 
in DOD-STD-2167, we have included it since the ATVS is expected to be 
used quite heavily for software maintenance). 

Figure 1.2. Role of the ATVS in the Software Life Cycle, 

1.3 Objectives 

The objective of the ATVS is to provide a set of computer-based tools 
which improve the reliability and maintainability of Ada software systems. 
The. specification and design of the ATVS concentrated on the environmental 
context: that is, its effective integration within an advanced software 
development environment (such as NASA's SDE) and its contribution to that 
environment (e.g., support for project management, change and 
configuration management, test and integration, documentation, 
requirements traceability, etc.). The ATVS will provide detailed program 
information for software engineers and programmers and summary 
information for software project managers. The ATVS can provide 
management visibility by serving as a window into the software development 
process. 
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2 Capabilities 

The ATVS will provide both Static and Dynamic Analysis of user 
programs. The requirements and design of the ATVS concentrated on 
providing support for the unique features of the Ada language, host-target 
testing issues, distributed environments, and advanced user interface 
capabilities. 

ATVS capabilities fall into four functional groups: Static Analysis, 
Dynamic Analysis, Report Generation, and User Interface capabilities. 
Table 2.1 summarizes ATVS Functional Capabilities by group. Specific 
capabilities of the ATVS are described in the following paragraphs. 

Table 2.1. ATVS Functional Capabilities by Group 

Static  
A n a l y s i s  
Source Processing 

StaticlStructural 
Analysis 

Static Task 
Analysis 

Programming 
Standards 

Dynamic 
A n a l y s i s  
Instrumentation 

-- Coverage 
-- Timing 
-- Tasking 

Executable 
Assenions 

Post-execution 
Analysis 

Unit Testing 

Report 
G e n e r a t i o n  

Automated 
Repom 

DOD-STD-2 I67 
Documentation 

Prologue Insenion 
& Extraction 

. Software Quality 
Metric Dam 

User 
I n t e r f a c e  
Batch and 
Interactive User 
Interface 

Interactive 
Wal ki hroug h 

2.1 Static Analysis Capabilities 

Ada Sou rce Processing. The ATVS will process the Ada language and 
perform lexical, syntax, and semantic analysis necessary for subsequent static 
and dynamic analysis. I t  will produce a DIANA intermediate representation 
of the users program which will be used to build the ATVS database. The 
ATVS database is the central repository of program information and serves 
as the primary means of communication between ATVS tool components. 
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and Stru-. The ATVS will provide extensive static 
and structural analyses concentrating on malyses unique to the Ada language. 
The analyses include: 

Package Dependencies -- describes "with" and "use" context clause 
dependencies and is valuable for change impact analysis 

Compilatiodrecompilation Order Dependencies -- Provided by 
most compilers, it is useful for maintaining system consistency 
subsequent to program modification 

Data Flow ErrordAnomalies -- identifies variables declared but not 
used, uninitialized variables, actual output parameter not set, etc. 

Global Symbol Use -- Identifiers, Types, Overloadings, Generics, 
Exceptions, Interrupts 

h f k  Task Ana lysis. This capability identifies the set of all possible 
sequences of concurreilcy in a given program. This sequence set is then used 
to identify features of the program's synchronization structure such as: all 
possible task rendezvous, all potential areas of concurrent execution, and 
areas of potential task blockage (i.e., deadlock). This capability will utilize 
the Temporal Semantic Analysis approach described by Buiir, et a13 . 

source code auditing against a set of modifiable programming standards. For 
example, "the maximum 4# of statements in a procedure IS 25". The ATVS 
has defined a set of 46 programming standards. 

2.2 Dynamic Analysis Capabilities 

of the insertion of software probes into the user source code. These 
instrumentation probes collect run-time program information for subsequent 
analysis and reporting. The types of instrumentation include: program 
execution coverage, program timing, and tasking activity. An executable 
Assertion is a statement placed in the source code by the programmer to 
indicate that the specific condition should exist. For example: 

0 

dards C h e c k .  This capability provides for user 

Instrumentation and Executable Assertions. Instrumentation consists 

3 Buhr, R., et al. "Experiments with PROLOG Design Descriptions and 
Tools in CAEDE: An  Iconic Design Environment for Multitasking, 
Embedded Systems," Proceedings of the 7th Int'l  Conf. on Software 
Engineerins JEEE Comp iter Societv. 198 0 
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-. assert ((velocity - v-naught) > epsilon) 

m%im u i i d & d f ( ( i i a , d h t . a h r t r n n n n t - m w ) ~ ~  
execution, the Assert statement can tither display an assertion vioration 
message to the user, or take some alternative action defined by the user. 

kine). This i r g ,  and Tas 
capability processes the program execution data collected at run-time by the 
instrumentation probes embedded in the user's source code. Analyses 
include: (1) execution coverage for programs at the subprogram, branch, 
and statement level; (2) execution timing at the subprogram, named block, or 
statement level; (3) task state transitions, basically a trace of the program's 
tasking activity. The tasking analysis information can be used in cooperation 
with the static task analysis information to determine the extent of task 
sequence set coverage (task synchronization set coverage represents the 
functional analog of execution coverage in sequential programs). 

program executions. This capability allows post-execution analyses to reflect 
incremental and cumulative execution coverage, timing, and tasking 
information. This type of historical information is an essential part of 
software documentation. 

Post-execution AualYsis (Coverw. T1m . .  

The ATVS will provide data collection for both single and multiple 

Unit Testing. This capability provides for automatic (with user 
direction) construction of Ada drivers and stubs. It will identify the 
undeveloped portions of a program and will construct Ada driver and stub 
"skeletons" which can be customized to a user's particular testing 
requirements. This capability supports both top-down and bottom-up 
development methods. 

ATVS Dynamic Analyses will be supported for both host-resident and 
target-resident Ada programs (assuming an upload/download capability 
between the host and target). 

2.3 Report Generation Capabilities 

I t  is important to note that the ATVS design has separated the process 
of static and dynamic analysis from the process of report generation. The 
effect of decoupling these two activities (which communicate through the 
common database) is that it allows definition and incorporation of new 
analyses and reports to proceed independently of one another. This approach 
provides the flexibility necessary for the incorporation of new capabilities 
into the ATVS allowing it to evolve over time in response the the 
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environment, the user community, and advances in software engineering. 
Table 2.2 summarizes ATVS automated reports. 

Table 2.2. Summary of ATVS Automated Reports. 

Static Analysis Repcrts 

Summary Information Report 
Compilation Unit Overview iteport 
Compilation Order Report 
SubprogramlTask Dependency Report 
Subprogram Cross Reference 
Task Cross Reference 
Package WithKJse Dependency Report 
Package Element SetNse Cross Reference 
Data Dictionary Report 
Global Entities Cross Reference 
110 Statements Report 
Type Information Report 
Type Cross Refrence Report 
Object Cross Reference Report 
Type Derivation Report 
Generic Instan!iatioa Report 
Exception Handling Report 
Interrupt Handling Report 
Overloading Information Report 
Statement Profile Report 
Software Metrics Report 
Target Code Cross Reference 
Data Flow Anomaly Report 
Programming Standards Report 
Source Re-analysis Report 

Dynamic Analysis Reports 

Testcrse Report 
Execution Coverage Summary Report 
Branch Coverage Summary Report 
Detailed Coverage Report 
Branch Report 
Reaching Set Report 
Execution Timing Report 1 
Execution Timing Report I I  
Task State Report 

DOD-STD-2167 Reports 

Calling Tree Report 
Functional Allocation Report 
Global Data Definition Report 
Input Data Report 
Local Data Deitnition Report 
Output Data Report 
Element Utilization Report 
File Description Report 
Record Drscription Report 

Automated Static and Dvnamic Analysis Rgports. All static and 
dynamic analyses performed by the ATVS will be available to the user in 
both interactive display and hardcopy forms. The ATVS will provide 25 
Static Analysis Reports and 9 Dynamic Analysis Reports. 

DOD-STD-2 1 67 CO mpatible Reports . The ATVS will provide nine 
automated reports consistent with DOD-STD-2 167. These reports are 
variants of the ATVS automated reports and are generated from database- 
resident information provided by ATVS static and dynamic analyses. The 
separation of analysis and report generation described above allows for the 
definition of revera1 reports based on the same analysis. This will allow 

0 
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definition of new reports (both informal and DOD-STD) without requiring 
development of new analyses. 

P r o l o g u e .  The ATVS supports the insertion of 
selected automated report information (e.g., package, subprogram, and task 
dependencies, global symbol use, etc.) into a prologue (i.e,, a dcscrittive 
preface to a program unit). Prologues are embedded in the user's source 
code as Ada comments and can be augmented with user providell 
information. Automatic insertion of prologuc infarmation ensures current 
and consistent program documentation. Prologues can be automatically 
extracted from the source code to generate formal documentation. 

Raw Software Met ric Dau . The ATVS will provide raw software 
quality metrics for analysis by other environment tools. These metrics (37 
indiviuual metrics supporting l.8 software quality criteria) are consistent 
with the STARS Data Collection Forms, Software Evaluation Report and 
Software Characteristics Report4 . 
2.4 User Interface Capabilities 

-andive I Jser Interface. The ATVS will provide both a 
batch and interactive user interface. The batch interface will utilize a bztch 
command language to direct ATVS processing. The full complement of 
ATVS capabilities (except for exclusively interactive activities such as 
Interactive Walkthrough) will be accessible through the batch command 
language. 

The Interactive User Interface will be based on a hierarchical menu 
structure providing users controlled access to ATVS functions. There wi l l  
be an extensive on-line help facility providing both reference and tutorial 
information. The Interactive User Interface will take advantage of advanced 
terminahorkstation bit-mapped graphics capabilities such as multiple 
windows, pull-down menus or palettes, and alternate input devices such as 
mice. 

Interactive Walkthroueh. 1nte.active Walkthrough replaces thc: 
manual process of "digging" through large source listings, cross reference 
reports, and other forms of documentation. It provides users with 
controlled, interactive access to the source code comprising a large software 
system. The user can browse the source code based on the program's call 

4 Interim Software Data Collection Forms Developmen! -- Software 
Evaluation Report, Softhare Technology for Adaptable, Reliable Systems 
(STARS), RADUCOEE Griffiss AFB, NY, June 1985. 
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tree or as directed by the user, and the multiple window capabilities of the 
interactive user interface allow simultaneous access to various ATVS static 
and dynamic reports. 

3 Database and Workstation Issues 

3.1 ATVS Database 

The ATVS database was designed as an "Entity-Relation-Attribute" 
(ERA) Database composed of 13 database entities and 17 associated 
relationships. The ERA model was selected for its expressiveness and 
flexibilty: The ATVS database contains a great deal of semantic program 
information that is best represented in the ER model. 

3.2 ATVS Functional Distribution to Workstations 

The ATVS was designed to operate in whole or in part on either a host 
machine (such as a VAX) or a microcomputer workstation (such as a SUN or 
VAXStation 11). This flexibility allows program managers to relegate 
certain ATVS functions (e.g., source processing, instrunentation, etc.) to the 
host machine, and other functions (e.g., static analysis, post-execution 
analysis, interactive walkthrough, etc.) to the workstation. Microcomputer 
workstations often provide advanced capabilities (such as multitasking, bit- 
mapped graphics, multiple windows, etc.) that the host cannot easily (if at 
all) provide without serious degradation in system response. An additional 
benefit target system testing since microcomputer workstations are often 
used as embedded system development erivironments. 

0 

4 Current Status and Conclusion 

The ATVS functional description and high-level design5 are complete 
and are summarized in this paper. The ATVS will provide a comprehensive 
set of test and verification capabikies specifically addressing the unique 
features of the Ada language, support for embedded system development, 
distributed er*;ironments, and advanced user interface capabilities. Its design 
emphasis KZS on effective software development environment integration 
and flexibility ?o ensure its long-term use in the Ada software development 
communitv. 

5 Ada Test and Verification System (ATVS); Functional Description, 
General Iicsearch Corporation CR-2-1301, September 1985. 0 
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a: a lhe Testabi l i ty  of Ada Programs - -- 
b v l d  Auty, SofTech, Inc. 

Norman Cohen, SofTech, Inc. 

Software development f o r  NASA's space s t a t i o n  poses a s i g n i f i c a n t  
challenge; considered the most d i f f i c u l t  challenge by some. 'Ihe d i f f i c u l t y  is  

for remote control and comnunications, software w i l l  l i e  a t  the heart of many 
essent ia l  and complex systems w i t h i n  the s ta t ion.  "he combined requirements 
f o r  h i g h l y - r e l i a b l e  systems exceed any sol  ,dare development e f f o r t  yet  
attempted. 

the magnitude and canplexity of the required software. With the requirements 

NASA's prev ious  experience w i t h  software development c e n t e r s  on the 
assembly code and the code i n  the high-level language HAVS, developed for the 
space s h u t t l e .  Wi th in  t h e  development of t h a t  sof tware t h e r e  was heavy 
r e l i a n c e  on c a r e f u l  t e s t i n g  and thorough m u l t i - l e v e l  checkout. W i t h i n  t he  
HAL/S development environment, the  checkout procedures could depend on the 
s t ab le  character is t ics  of and 1 imitations on program behavior inherent i n  the 
language. This paper addresses  the  concerns r a i s e d  by  cons ide ra t ion  o f  the 
requi rements  for  t e s t i n g  and checkout procedures fo r  t he  space s t a t  ion 
software.  I n  p a r t i c u l a r  i t  addresses  the  use of Ada i n  the  development o f  
w i d e l y  d i s t r i b u t e d  yet c lose ly  coordinated processing. 

T h i s  a n a l y s i s  i s  done i n  two contexts .  First ,  an e v a l u a t i o n  o f  t he  
language is presented ,  d i scuss ing  how the  r u l e s  and f e a t u r e s  of the  AJa 
language e f f e c t  the  t e s t a b i l i t y  of software w r i t t e n  i n  i t .  Second, some 
g e n e r a l  techniques i n  sof tware development which can augment t e s t i n g  i n  the  
developnent of r e l i a b l e  software and some specific recomnendations for tools 
and appropriate canpilation are  presented. 

?his paper is a s m a r y  of a f u l l  report prepared a t  the conclusion of J I ~  

extended s t u d y  e f fo r t  on t h i s  topic. I t  therefore does not go into d e t a i l  in 
e l a b o r a t i n g  each point  o f  i n t e r e s t .  An at tempt h a s  been made t o  cover  the  
breadth of the report and present its key f ind ings .  

Evaluation of Ada -- 

We begin b y  d i scuss ing  how a programming language can be e v a l u a t e d  f'or 
t e s t a b i l i t y .  For our purposes,  t e 5 t a b i l i t y  is the a b i l i t y  t o  determine,  b y  
tes t  execut ion  of  sof tware ,  whether the sof tware w i l l  funct ion c o r r e c t l y  i n  
operational use. Testabi l i ty  measures the extent to which it is possible to 
construct t e s t s  such that  the behavior of the software on those t e s t s  r e f l e c t s  
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the  behavior of system when deployed. brig the issues re la ted  to t e s t a b i l i t y  
are t h e  ease of gene ra t ing  comprehensive test  c a s e s ,  t h e  p r e d i c t a b i l i t y  o f  
resource U t i l i z a t i o n  unde r  a l l  c i r c u a s t a n c e s  and t h e  d e t e r m i n i s t i c  
r epea tab i l i t y  of processing sequences. 

This def in i t ion  appl ies  pr inc ipa l ly  to the developed program, bu t  it can 
be extended to  app ly  t o  t h e  language used t o  expres s  t h a t  program. A 
programing language supports t e s t a b i l i t y  to t h e  extent tha t  it f a c i l i t a t e s  the 
writing of t e s t ab le  software. We have ident i f ied the following a t t r i b u t e s  of a 
PrOgramning language which f a c i l i t a t e  t e s t ab i l i t y :  

- support for modular decomposition (i.e., supporting t h e  t e s t i n g  of u n i t s  

- existence o f  i n t e r f a c e  s p e c i f i c a t i o n s  c o n s t r u c t s  which a r e  c l e a r  and 

- complete  t y p e  and program u n i t  s p e c i f i c a t i o n s  a 1  lowing comprehensive 

- well-defined run-tine error handling, - 
- support for the writing of t e s t  d r ivers  and hardware s t i m u l i  s imulation, 

- support for the creation of high-level abstractions.  

independently of their use i n  the system), 

ccin pre hen si v e 

consistency checking during program compilation, 

predictable resource allocation and u t i l i za t ion ,  

and 

With these evaluation c r i t e r i a ,  we considered t h e  following aspects of the 
Ada language: 

- Data Types and Subtypes, 
- Separate Compilation and Packages, 
- Subprogram k f i n i t i o n ,  
- Generic Units, 
- Exceptions, 
- Concurrent F’rocessing and 
- Storage Management. 

Each a spec t  was considered from the  viewpoints  o f  conformance w i t h  
e v a l u a t i o n  c r i t e r i a ,  r i sks  t o  t e s t a b i l i t y  and recommendations fo r  reducing 
those  risks. 

Fig. 1 shows an e v a l u a t i o n  c r i t e r i a  versus f e a t u r e s  matr ix  showing the  
extent of support of t h e  Ma language for t e s t ab i l i t y .  The matrix shows where 
a s p e c t s  of  t he  language support  t he  e v a l u a t i o n  c r i t e r i a ,  independent o f  t h e  
p o s s i b l e  r i sks  w i t h i n  t h e  same f e a t u r e  a rea .  I n  g e n e r a l ,  t h e  s t rong  typ ing  
r u l e s  of  t he  language and the  concept o f  s e p a r a t e  s p e c i f i c a t i o n  and program 
u n i t  bodies provide excel l en t  support for t e s t ab i l i t y .  
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Data T y p e s  and S u b t y p e s  
I S e p a r a t e  Compi l a t ion  and Packages  
I 1 Subprograms 
I I 1 Generic U n i t s  
I I I I E x c e p t i o n s  
I I I C o n c u r r e n t  P r o c e s s i n g  
I 1 

I-+---+---+---+---+---+---+-I 
Modular Decomposi t ion 1 . ~ . ; . ; . ~  1 . ;  
C l e a r  & Comprehensive 1 . 1 . ; . ; 0 1 0 1 . 1 . 1  

i n t e r f a c e  s p e c i f i c a t i o n s  1 . ; . 1 . ; . . 1 . 1 . 1 
Compile time c o n s i s t e n c y  1 . ~ . ~ . ; . ;  I 

checkina  l . 1 . 1 . 1 . 1 . 1 . 1 . 1  

Wel l -de f ined  r u n - t  ime 1 . 1  I I 1 0 1 . 1 0 ;  
er ror  h a n d l i n g  1 * 1 ' 1 * 1 * 1 * 1 * 1 * 1  

P r e d i c t a b l e  r e s o u r c e  u s e  1 . 1 . ; . 1  I ; o : . ;  
and a l l o c a t i o n  l * 1 * 1 * 1 . 1 * 1 * 1 * 1  

Suppor t  f o r  t e s t  and t e s t  ; 1 0 1 . 1 0 1 . 1 0 1  
d r i v e r  p rograms 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1  

S u p p o r t  f o r  c r e a t i o n  of ~ ~ i e ; o ; ~ i ~ ; o ~ e ;  

I 

I 

I I 

I I 
I I I 
I I I I 1 1 S t o r a g e  Management 

I 

I I 
I 

I I 1 I I I I I 

I I 

I I I I I I I I 

I 

I I I I I I I I 

I 

I I I I I I I I 

h i g h  l e v e l  a b s t r a c t i o n s  ; . 1 . ; . ; . . ; . ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
F i g .  1 ,  E v a l u a t i o n  C r i t e r i a  v s .  F e a t u r e  Matr ix  

Two a r e a s  of p a r t i c u l a r  i n t e r e s t  a r e  represented a s  o n l y  h a l f - f i l l e d  
c i r c l e s  i n  the evaluation matrix. lhese represent qual i f ied support for t h e  
evaluation c r i t e r i a .  In the case of exception management, the ru l e s  for the 
r a i s i n g  of excep t ions ,  i nc lud ing  user s p e c i f i e d  r a i s e  s t a t e m e n t s ,  and fo r  
exception propagation, a l l o w  for  a very concise  t reatment  of exception 
processing. Dust when properly docunented, exception processing a s  defined i r i  

t he  language is  an important p a r t  of a module's i n t e r f a c e ,  support ing the  
requirement for c l ea r  and comprehensive interface specifications.  Because it 
is dependent on opt ional ly  included comnents, however, t h i s  can be considered 
on1 y q u a l i f i e d  suppor t  for t h e  evaluation c r i t e r i a .  

The second ha l f - f i l l ed  c i r c l e  is under generic u n i t s .  lhis is a similar 
s i t u a t i o n  a s  fo r  exceptions.  The r u l e s  for  formal gene r i c  parameter 
s p e c i f i c a t i o n  and f o r  generic  i n s t a n t i a t i o n s  a l l o w  fo r  a c l e a r  and conc i se  
s p e c i f i c a t i o n  o f  the  u n i t s  i n t e r f ace .  However, a s  w i l l  be discussed  under 
risks, there are secondary aspects of actual parameters (which we term second 
order properties) which are not docunented , such a s  functional requirements on 
actual procedure parameters. Because t h e s e  secondary aspects can be c r i t i c a l ,  
yet possibly undocunented, support i n  t h i s  area is a l s o  qualified.  
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e Testab i l i ty  - Risks  

I n  the e v a l u a t i o n  of t h e  Ada language f e a t u r e s ,  s e v e r a l  r i sks  t o  
t e s t a b i l i t y  as well a s  the above benefits  were identified.  These r i s k s  f a l l  
i n t o  two broad c a t e g o r i e s  o f  i n e f f i c i e n c y  and h i d d e n  i n t e r f a c e s ,  p l u s  one 
additional concern without such convenient categorization. 

The concern over efficiency is based on a simple assunption tha t  features 
which f a i l  t o  p r o v i d e  a i lequate  e f f i c i e n c y  w i l l  n o t  be u s e d  i n  m a n y  
applications. The resu l t ing  program which may be more or l e s s  convoluted i n  
i t s  avoidance o f  t h i s  f e a t u r e  w i l l  c e r t a i n l y  not have bene f i t ed  i n  i t s  
t e s t ab i l i t y .  Although processing capabi l i t i es  and memory s izes  are increasing 
d r a m a t i c a l l y ,  t h e  requirements t o  surpass  the  increased c a p a b i l i t i e s  a r e  
a l r e a d y  being considered. Concerns over  e f f i c i e n c y  i n  Ada f a l l  i n t o  t h r e e  
areas : 

- excessively expensive run-time checks, 
- inappropriate or undirected instantiation of generic u n i t s ,  and 
- excessively expensive tasking architecture. 

Tnese can be col lec ted  under the general concern of inefficiency i n  support of 
high-level abstractions. m 

The second broad concern is that  of hidden interfaces.  Despite the strong 
support i n  t h e  language for de ta i l ing  important interface information, several  
p o s s i b i l i t i e s  f o r  hidden i n t e r f a c e s  ex is t .  Hidden interfaces ex is t  wherever 
interact ions or dependencies ex is t  which are not p a r t  of the specification or 
declarat ions of the u n i t .  These can be c lass i f ied  a s  being due to: 

- global var iab les  (side effects of procedure and f u n c t i o n  c a l l s ,  conten t ion  

- the raising and propagation of exceptions, 
- dynamic storage u t i l i za t ion ,  
- dynamicall y determined t iming behavior , and 
- second order properties (e.g. functional requirements on actual procedure 

over access between separate t a s k s )  , 

parameters) for generic instantiations.  

An example o f  second order  p r o p e r t i e s  would be the  case of a gene r i c  
sorting procedure. A typical implementation w i l l  have the type of the objects 
! I : ]  (I gonoric p r a m s t w  , rclqirlrlng IJ flowlid ~~~lt~~lttiotor Lo bo cl rutwtllrti w l i i i ~ l l  C * ~ I I I  

compare v a l u e s  of t h a t  type and r e t u r n  a boolean v a l u e  on the  b a s i s  o f  t h e  
condition t t l e s s  t h x P .  ?he second order property of the actual function used 
d u r i n g  instant ia t ion is t h a t  it must return a proper ordering of a l l  values of  
the type. In f ac t ,  i t  is conceivable that the sorting routine may never reach m 
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an exit p o i n t  i f  t h e  function does not have  t h i s  p rope r ty .  
is not r e q u i r e d  i n  any  way by t h e  l anguage  d u r i n g  i n s t a n t i a t i o n .  

Yet t h i s  p r o p e r t y  

&e l a s t  r i s k  for t e s t a b i l i t y  is t h e  g e n e r a l  non-determinism of t a s k i n g  
i n t e r a c t i o n s .  While n o t  so much a f a u l t  of t h e  l a n g u a g e ,  a s  a s y n c h r o n o u s  
concurrent p r o c e s s i n g  is i n h e r e n t l y  n o n d e t e r m i n i s t i c ,  t h e  p re sence  of t a s k i n g  
i n  an Ada progran  can  c a n p l i c a t e  t h e  t e s t i n g  of t h a t  p r o g r m .  

Recomnendations t o  - Reduce Risk - 
In  response to t h e  i d e n t i f i c a t i o n  of t h e s e  r i s k s ,  s e v e r a l  recomnendat ions  

for r educ ing  t h e  r i s k  were made. Ihese f a l l  under  t h e  g e n e r a l  head ings  of: 

- r equ i r emen t s  for a p p r o p r i a t e  deve lopnent  p r a c t i c e s  and t r a i n i n g ,  - r e q u i r e m e n t s  for a p p r o p r i a t e  tools, and - r equ i r emen t s  for a p p r o p r i a t e  compi l a t ion .  

The p r i n c i p l e  b e h i n d  t h e  r e q u i r e m e n t s  fo r  a p p r o p r i a t e  d e v e l o p m e n t  
p r a c t i c e s  and tools  is based on t h e  r e c o g n i t i o n  t h a t  t h e i r  u se  can h e l p  a s s u r e  
r e l i a b l e  s o f t w a r e  where  t e s t i n g  is  d i f f i c u l t .  T e s t i n g  p r a c t i c e s  c a n  Se 
augmented  by  t h e  u s e  d u r i n g  d e v e l o p m e n t  o f  p r o o f  t e c h n i q u e s ,  s t a t i c  p rogram 
a n a l y s i s  and  r u n t i m e  m o n i t o r i n g .  T h r o u g h o u t  t h e  d e v e l o p m e n t  p r o c e s s ,  
v e r i f i c a t i o n  t e c h n i q u e s  c a n  be  used  t o  i n s u r e  p r i n c i p l e s  i d e n t i f i e d  and 
v e r i f i e d  e a r l y  i n  t h e  d e v e l o p n e n t  a r e  h e l d  true through implementa t ion .  

Fo r  a p p r o p r i a t e  programming g u i d e 1  ines and  t r a i n i n g ,  t h e  f o l  l o w i n g  
s u g g e s t i o n s  were made: 

- For n m e r i c  p r o c e s s i n g ,  t r a i n i n g  should i n c l u d e  a d i s c u s s i o n  of d i g i t a l  
c o m p u t a t i o n  a l g o r i t h m s  and t h e i r  i n t e r a c t i o n  w i t h  u n d e r l y i n g  n u m e r i c  
p r e c i s i o n  i n  d e t e r m i n i n g  t h e  a c c u r a c y  of t h e  computed  v a l u e .  T h i s  i s  
n e c e s s a r y  to p u t  t h e  r u l e s  for nuneric p r e c i s i o n  of t h e  l anguage  i n  p roper  
c o n t e x t  . 

- P r o g r a m i n g  G u i d e l i n e s  shou ld  be e s t a b l i s h e d  for: 
- t h e  j u d i c i o u s  use  of s u p p r e s s  and i n l i n e  pragmas to p r o v i d e  

e f f i c i e n c y  a s  n e c e s s a r y ,  
t h e  avoidance  of g l o b a l  v a r i a b l e s  and hidden side effects ,  
t h e  h i d i n g  of p e r s i s t e n t  v a r i a b l e s  i n  package b o d i e s  (and t h e r e f o r e  
p r i v a t e  to t h e  package) ,  and 
t h e  use  of o u t  pa rame te r s  from procedures  over uncons t r a ined  
composite r e s u l t s  from f u n c t i o n s  ( a 1  lowing b e t t e r  s t o r a g e  
u t i l i z a t i o n ) .  

- 
- 

- 
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- P a i n i n g  should emphasize: e 
- concurrent programing concepts - the  concept and significance of 

parameters 

and practices 
second order properties of generic 

- Standards (with enforcement) should be established for :  - the  docunentation and use of exceptions 
- storage u t i l i za t ion  practices 

A more r e l i a b l e  approach to improving t e s t a b i l i t y  is through the use of 
Ihe following are  Sane appropriate tools to aid i n  the developnent process. 

t o o l s  to spec i f i ca l ly  address the risks for t e s t a b i l i t y  ident i f ied:  

- Proof systems for verifying 2nd order assertions i n  generic instant ia t ions 
and asser t ions about task interactions,  task s t a t e  systems and other 
progran propert ies .  
Runtime monitors for deadlock and other deadness e r rors ,  storage 
u t i l i za t ion  parameters , and other runtime properties. 
S ta t ic  program analysis  for tasking interactions,  storage u t i l i za t ion  and 
other program properties including adherence to the programing guide1 ines 
l i s t e d  above. 
Expert system support such as a Veal-time assistant1# for cyclic-based 
system generation. 

- 
- 

- 

Having i d e n t i f i e d  program e f f i c i e n c y  a s  a r i s k  t o  t e s t a b i l i t y ,  i n  t h a t  
good f e a t u r e s  of the  language w i l l  not be used i f  they a r e  not s u f f i c i e n t l y  
e f f i c i e n t ,  s e v e r a l  suggest ions for  appropr i a t e  compi la t ion  should be 
considered. I n  gene ra l  , a h i g h l y  optimizing compi l e r ,  w i t h  e f f i c i e n t ,  
deterministic runtime support is a necessary goal. Particular a t tent ion should 
be given to the following features: 

- 
- reduction of uncertainty i n  the raising of predefined exceptions, 
- 

- optimization of tasking interactions wi th  special  support for tasking 

- e f f i c i en t  s ize  and speed of generic instant ia t ions w i t h  pragmas for user 

optimization of subtype  range constraint  checking , 

space e f f i c i en t  compilation w i t h  pragmas and representation clauses  for 
user control of storage u t i l i za t ion ,  

paradigms through pragmas or pattern recognition, and 

specification of instantiation c r i t e r i a  . 
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S u n a r y  

In  summary, I t  was found t h a t  t h e  language o f f e r e d  t h e  p o t e n t i a l  t o  
g r e a t l y  improve the t e s t a b i l i t y  of software, provided t h a t  certain guide l ines  
were followed. The language  i n t r o d u c e s  f e a t u r e s  t o  d e a l  w i t h  h i g h e r  l e v e l  
abs t rac t ions  and the canplexltles of concurrent processing and dynamic storage 
u t l l l z a t i o n .  These features a r e  cons idered  necessa ry  t o  d e a l  w i t h  t h e  
canplexltles o f  the space s t a t ion  software requirements, b u t  can decrease t h e  
t e s t a b i l i t y  of t h a t  sof tware.  'kese r i s k s  t o  t e s t a b i l i t y  can be d e a l t  w i t h  
through a combination of a p p r o p r i a t e  development p r a c t i c e s  and t r a i n i n g ,  
appropriate tool suppor t  and appropriate compilation. 
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Fication is the use of mathematical woof to con irm that a 
program will behave as specified when it is executed. Formal verification 
can produce a much higher level of confidence in a program than testing. 
Nonetheless, formal verification requires large amounts of skill, human time, 
and computer time, so it would be impractical to verify formally an entire 
Ada program for a typical embedded computer applicaGion. 

We propose an integrated set of tools called a validation environment to 
support the validation of Ada programs by a combination of methods. The 
validation environment exploits the Ada distinction between module interfaces 
and module implementations to validate large Ada programs module by module. 
The proposed validation environment is called the Modular Ada Validation 
Environment, or MAVEN. MAVEN does not yet exist, nor have efforts begun to 
construct it. Rather, MAVEN is our vision of the context in which Ada formal 
verification should be applied. A more complete discussion of MAVEN can be 
found in [ 1 I .  

Our vision of  MAVEN is based on several requirements that we have  
identified for the validation of’ Ada programs. These requirements are based 
or1 the recognition that Ada programs for mission-critical applications ere 
large, that skilled software engineers a r e  in short supply, that tile 

construction of a verifier is an expensive undertaking, and that the use 0:’ a 
verifier may be time consuming. Our requirements are as follows: 

1. Formal proofs should not be based on the behavior of  a particular 
implementation. 

2. It should be possible to validate a large program module by module. 

3 .  For typical mission-critical applications, verification will have to be 
integrated with other forms of validation. 

4. It should be easy to request the proof of certain critical properties 
which, while they do not imply correctness of a module, significantly 
raise our confidence in its reliability. 

See [ 2 ]  for a more complete discussion o f  these requirements. 
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When software engineers use the term "validation and verification," they 
Usually do not have formal verification in mind. To avoid confusion, this 
Paper U L ~ S  the terms validation and verification in two distinct and precise 
senses: 

Verification is the use of formal proof, checked by machine, to 
establish properties of a program's run-time behavior. 

Validation is the process of increasing onels confidence in the 
reliability of a program. Formal proof is one of many methods 
for validating software. 

Confusipn may also arise from our use of the term environmes. Ada 
Programming Support Enviroriments ( A P S E ' S )  already exist, and have functions 
that overlap those we propose for a validation environment. We do not 
envision MAVEN a s  a full A P S E  or as a tool set independent of  an A P S E .  
Rather, we view MAVEN as an integrated tool set embedded within an A P S E .  It 
can be thought of as a tfsubenvironment.*l Many A P S E  tools, including an Ada 
compiler, may be used both for validation and f'or other purposes. 

1 Integration of Multiple Validation Methods 

One reason for validating programs module-by-module is so that different 
modules can be validated in different ways. There are many software unit 
validation methods, all of which have been used successfully in the past. 
These include: 

- formal proof generated with machine assistance and checkea by machine 

- informal proof carried out by hand 

- code walkthroughs 

- unit testing 

- acceptance of a software component as trustworthy, based on experience 
using the same component in a previous system 

It is not necessary for a project to choose one of these validation methods 
for use throughout a program. Given the right framework, different methods 
can be combined in an effective symbiotic relationship to ensure the quality 
of a system. 

While formal verification is the most effective means of ensuring 
consistency between a program and its specifications, it has limitations, 
These include the problem of validating that the specifications themselves 
specify what the customer wants; and the cost -- in both machine time aiid the 
time of skilled personnel -- of developing arid checking the proof'. l'tre 
manufacture of Software, like any manufacturing process, entails a tradeoff 
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between cost and level of quality assurance. In some programs there are 
modules fo r  which any form of validation less powerful than formal proof 
would be socially irresponsible. Sometimes the same program also contains 
many modules for which formal proof would be a wasteful misallocation of  
resources. 

Furthermore, there may be some modules that cannot be verified because 
they use features of the language for which there are no proof rules. 
Features may be excluded from the "verifiable subset" of Ada even if there 
are occasional legitimate uses for such features. Such legitimate uses can 
be isolated in modules that are validated by some means other than f'ormal 
proof. In particular, low-level features of the Ada language are inherently 
machine dependent and thus not characterized by proof rules. Low-level 
features can be Isolated in interface modules, allowing the rest of a system 
to be validated by formal proof. 

Many factors combine to determine the most appropriate form of  
validation for a module. The cost of formal proof must be compared with the 
possible impact of an error in the module. Low-level, target-dependent 
interface modules might best be validated by informal proof. For certain 
hard-to-specify modules, for e ample a graphics display builder whose desired 
output is specified pictorially, testing might be not only the cheapest, but 
also the most reliable form of validation. For modules that are not 
particularly critical, arid for which test drivers would be difficult to 
write, code walkthroughs might be most appropriate. Software might simply be 
trusted (until integration testing) if it has been extracted from a working 
system in which it has functioned reliably. 

To ensure complete coverage, different forms of validation cannot be 
combined haphazardly. There must be a unifying discipline. One of the 
functions envisioned for MAVEN is to provide such a discipline. 

2 Validation Libraries 

The Ada language was designed to facilitate the construction of' tiulje 
programs. A pervasive theme in the design of the language is the division of 
a program into units that can be understood individually yet checked f o r  
consistency with each other. If this theme is extended from unit compilation 
to unit validation, one unit of a program can be changed and revalidated 
without revalidating the rest of the program. This is especially important 
during program maintenance. 

Module-by-module validation of a large program can be achieved in the 
same way as module-by-module compilation. Compilation of an Ada program unit 
consists not only of code generation, but also consistency checking. A 
unit's syntactic specification is compiled before either the unit's body or 
any external uses of the unit. This compilation puts information about the 
syntactic spccification into a Ijjram library. Later, when either the 
unit's body or an external use of theynit is compiled, this information is 
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retrieved from the program library and used for compile-time consistency 
checks. 

The consistency checks that occur during compilation are limited to the 
information found in a unit's syntactic specification, such as the number, 
types, and modes of subprogram parameters. Except for this limitation, 
however, they are analogous to the checks that occur during unit validation. 
Just as a unit has a syntactic specification that is checked during 
compilation, it has a semantic specification that is checked during 
validation, Just as syntactic specifications are recorded in a program 
library, semantic specifications are recorded in a M A V E N  validation library. 

Semantic specifications are textually embedded in Syntactic 
specifications in the form of structured comments like those found in Anna 
C31. This unifies the notions of syntactic and semantic specifications. 
When MAVEN is directed to compile a specification, it invokes the Ada 
compiler to place the syntactic specification in the program library. If no 
compile-time errors are found, the semantic specification is then extracted 
from the structured comments and added to the validation library. 

2.1 Validation Order 

To facilitate compile-time consistency checks, the Ada language 
restricts tht order in which units may be compiled. M A V E N  imposes analogous 
restrictions 'm the order of' validation, Specifically, a module's semantic 
specification must be entered into the validation library before the 
implementation or any use of the module is validated, Then the 
implementation and each use of the module may be validated in any order. 
Validation of' the implementation establishes that the body fulfills the 
semantic specif;cation. Validation of a use of the module involves assuming, 
while validating the using module, that the semantic specification is 
correctly implemented. This assumption is permitted as soon as the semantic 
specification is entered into the validation library, even before the body 
h a s  been demonstrated to fulfill the semantic specification. (This is 
analogous to the .;ompilation of a subprogram call after the subprogran 
declaration has bet,: compiled but before the subprogram body has been 
compiled.) It implies that validation of one unit can proceed considering 
only the specifications of the units it invokes, without considering their 
bodies. This is the essence of nodule-by-module validation. 

0 

Some program units may be validated by fiat. That is, after a code 
walkthrough or simply on the basis of trust, a unit may simply be decreed to 
be llvalidated." This still must be done explicitly, by a request to MAVEN, 
and the usual validation order rules must be obeyed. In particular, a unit 
may not be decreed to be validated before the specifications it is meant t o  
fulfill have been entered into the program library. 
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2.2 Revalidation Order 

Just as the Ada language restricts compilation order, it imposes 
recompilation requirements to ensure that consistency checks have always been 
performed on the latest version of a program. If a syntactic specification 
is recompiled, all consistency checks based on the old syntactic 
specification are rendered invalid. The corresponding body and all uses of 
the unit must then be recompiled so that the consistency checks may be 
repeated with respect to the new syntactic specificatior.. 

MAVEN imposes analogous revalidation requirements. If a module's 
semantic Specification is changed, both the implementation and all uses of' 
the module must be revalidated if they have already been validated. This is 
Televant during program development and program maintenance. 

In program development, failure to validate a body may mean either that 
the body does not correctly implement the corresponding logical specification 
or that the logical specification itself is incomplete. In the first case, 
the body can be corrected and validated. In the second case, the logical 
specification must be modified and all other units using that logical 
specification must be revalidated. This may require still further 
modifications and revalidations. 

In program maintenance, revalidation requirements indicate which parts 
of a large program are potentially affected by a change. This can reduce or 
eliminate the "ripple effect" typically resulting from a change to a working 
program. All possible implications of the change will be flushed out by the 
ensuing round of revalidations, assuming the revalidation is sufficientlv 
thorough. (If the revalidation is by unit testing, this process amounts to 
regression testing. Rather than blindly repeating a!l tests, however, we use 
validation dependency relationships to identify the tests that might possiuly 
have been affected by the change.) 

A unit validated by fiat is subject to the same revalidation 
requirements as any other unit, even if revalidation consists onl) of 
reissuing tile decree by which the unit was originally validated. T r i i s  
encourages software engineers to consider whether the original decree is 
still valid given the new specifications. For example, it may be discovered 
that an off-the-shelf package originally thought to be applicable to the 
current application is inappropriate given the revised specifications. 

2.3 Other Information in the Validation Library 

A validation library contains information besides the seroantic 
specifications of program units. A validation plan can be entered into the 
library in advance, stipulating how a unit will b e  validated once it is 
written. The validation library also records which units have been 
validated, and according to which validation plans. 

-- 
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Each module may hive  its own validation plan, The plan Specifies the 
validation method applied to the unit (testing or formal proof, for example) 
and the details of the validation criteria (which files contain the test 
driver or test data, algorithms for evaluating test results, or which 
Properties are to be proven, for example). A validation pian may specify 
several rounds of validation, all of which must succeed for th? unit t o  be 
considered validated. For example, a plan may call for testing to find and 
eliminate obvious errors, followed by formal proof to ensure the absence of' 
more subtle errors. No one round of validation need provide complete 
coverage of the unit's semantic specification. Some parts of a unit's 
Semantic specification may be proven valid, some valiaated by testing, and 
Some simply assumed to be valid, for example. 

Besides allowing MAVEN to enforce validation and revalidation order 
dependencies, the data kept in the validation library allows MAVEN tools to 
generate reports on the progress of system validation to date. The reports 
indicate which units have been validated and how rigorously. Duririt: 
development, validation of units can be tracked and compared with schedbles. 
When an error arises, information about the validation methods applied to 
each unit and the properties validated for each unit can t-,elp pinpoint 
suspect modules. Tire revalidation implications of a proposed change can 
quickly be estimated. 

3 Other Components of a Validation Environment 

A verifier is only one of the tools that a validation environment should 
provide. We have already mentioned the need for a validation library. This 
implies the need for library management tools; incluc'ns tyre 
report-generation tools diacussed above. Other tools can assist in L::#> 
writing of specifications, the retrieval of reusable software from A large 
catalogue, and the execution and analysis of tests. 

Formal specifications are at the heart, of M A V E N ,  but they are difficult 
for the typical software engineer t o  write. Therefore MAVEN must s u p p l y  
tools to help the software eilgiceer express h i s  intent. These tools a r e  
collectiiely called the specification-writer's assistant.. One component or' 
the specification-writer's assistant is a knowledge-based too; that will 

--- 

construct formal specifications based on a dialogue vJith the user. The 
specification-writer's azsistant also includes an interpreter for a logic 
programming language, similar to PROLOG bi;t providing the higher level of 
data 3bstraction found in the Ada language. Tnis t oo l  can be used for rapid 
prototyping, to test specifications as they dre written. 

The Ada language 1s meant to encourage the reuse of general-purpose 
software components. This approach can only have a significant impact or1 

software development costs if there is a large xorpiq of general-purpose 
software avdilable for reuse; but such a large corpus pr.esents an awesome 
informdtion-retrieval problem. While software retrieval is not usua'liy 
+,..ought of as a qralidatjw problem, Pl.atek [ 4 1  has rioted that forlilal 
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Specifications and verification can form the basis of a retrieval tool. In 
ri 

addition to a validation library, MAVEN might include a catalogue of 
general-purpose, reusable software components, all of which have been 
formally specified. Given the semantic specification of a module required i n  
the design, a MAVEN tool would search the catalogue for reusable components 
that can be proven to have compatible specifications. 

c 
Because testing is the most frequently used validation method, MAVEN 

contains tools scecifically supporting testing. These include tools to 
generqte subprogram stubs, tools to generate test drivers, tools to generate 
test data, and tools to analyze test results, All of these tools can base 

validation library. For embedded applications, there should be saftware 
simclation tool:, and tools providing interfaces with hardware mockups. A 
related tool would administer tests automatically, based on the validation 
plans found in ths validation library. Such a tooi codld also revalidate 
those units validated entirely by testing, whenever revalidation i s  
required. In essence, this automates regression testing. 

. their outputs at least in part on the semantic specifications found in the 

4 MAVEN and the Software Life Cycle 

MAVEN tools are primarily conceraed with unit validation. This can l e a d  
to the impression that the benefits of MAVEN are primarily reaped during the  
unit validation stage of the life cycle. In fact, the use of MAVEN imposes a 
discipline on software development and provides benefits throughout the 
software life cycle. This section walks through a typical waterfall model o f '  
tile life cycle and describes the impact of MAVEN on each stage. 

4.1 Requirenents Analysis 

The s !ec  i f rca t ion-hr i ter I s  a? si s t an t supports the formal express i o f .  d 1' 
requirements. Requirement j can be entered into a new MAVFN validation 
library as the semantic specifications of the main program and of  tdsks 
dcclared in library packages. These formally stated requirements can be 
checked for consistency using a verifier. They may later become the bdsis 
foi- design verification and code verification. An integration-testing p l a n  
may be derived from the formal requirements and stored in the validatiorl 
library until soft.wa;e integration time. 

4.2 Design 

During high-level design, the modular decomposition of a system i s  
determined and the specifications of each module arc written. Algorithms fur 
top-level modules may also be written. MAVEN can play four roles at this 
stage -- design documentation, recording of unit validation plans, 
software-component retrieval, and design verification. 
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Design documentation consists of entering the semantic specifications 
for each design module into the validation library. The specification- 
Writer's assistant again comes in handy here. The semantic specifications 
entered at this staye become the basis for later verification of module 
bodies. The appropriate time to formulate unit validation plans is just 
after unit semantic specifications have been identified. One of the 
responsibilities of an Ada designer is to look for existing software that can 
be incorporated in a design. As noted tarlier, formal specifications might 
provide the basis for software automated software retrieval. The top-level 
algorithms of a high-level design can expressed in executable Ada code 
verifiable in the same way as lower level modules, Using orrly the 
specifications of the main system modules (the main program and tasks 
declared in library packages), it can be proven that the top-level algorithms 
correctly implement the system specifications. 

4 . 3  Unit Development 

There is not a clear dividing line between design validation and unit 
Validation. The same techniques applied to the top-level rnodules during 
design validation are applied to lower-level modules during unit validation. 
The unit validation plan placed in the validation library during system 
design is retrieved and applied. A round of validation is repeated until it 
is successful, and then the next round specified in the validation plan is 
begun. The validation plan is restarted from the first round any time a 
change is made to the unit, its semantic specification, or the semantic 
specifications of the modules that the unit invokes. 

Validation can uncover implicit assumptions that underlie the correct 
functioning of a module, especially when validation is by formal 
verification. Such assumptions must be added to a module's semantic 
specifications if the module is to be verified. Thus the validation process 
contributes to the development of  complete and up-to-date specifications. 

4.4 Integration Testing 

The main impact of MAVEN on integration testing will be a drastic 
reduction in integration problems. The Ada compiler will already have 
checked all units for syntactic consistency with each other. MAVEN will 
already have checked all units for consistency with their own semantic 
specifications and the semantic specifications of the modules they invoke. 
The few integration problems that remain will arise from incomplete module 
specifications (for example, specifications that address functional 
requirements but not performance requirements) and insufficiently rigorous 
unit validation (for example, use of code walkthroughs as the sole means of 
validation or the use of tests that do not provide adequate coverage). 
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4.5 Maintenance 

MAVEN will reduce the costs and risks of program maintenance. Both the 
data MAVEN collects during program development and the discipline MAVEN 
imposes on program modification will help confine the "ripple effect" of a 
change. MAVEN will also keep documentation up to date after changes have 
been made. 

The most frequent problem associated with program maintenance is a 
change that violates an implicit assumption upon which a different part of 
the program depends. This problem is less likely to arise when using MAVEN 
for two reasons. First, the validation process applied during program 
development has served to make implicit assumptions explicit. The 
documentation will warn the maintenance programmer right from the start that 
certain changes must be disallowed unless further changes are made in other 
modules. Second, if the semantic specification of a module is changed, MAVEN 
will enforce the revalidation of all modules that may be affected by the 
change. The revalidation dependencies alone clarify the potential impact of 
a contetiplated change. The actual revalidation, which may follow the 
original unit validation plan created during the initial design, leads the 
maintenance programmer to discover which potential impacts are truly 
significant, to revise the affected modules, and to validate the revisions. 
If the revised modules can themselves affect other modules, revalidation of 
these other modules will also be required. If sufficiently rigorous, 
revalidation anticipates and averts all possible ripple effects, 

MAVEN keeps documentation current during program maintenance in the same 
way that it does so during initial development. Every time a unit's semantic 
specification changes, MAVEN records the fact. This makes the next rourid of 
maintenance easier. 

5 Conclusions 

We have described our vision of a Modular Ada Validation EnvirollniL:it, 
MAVEN, to propose a context in which formal verification can fit into t t ~ c  
industrial development of Ada software. While proof of correctness i s  
unquestionably the most rigorous and effective form of validation, there are 
contexts in which it is inappropriate. Nonetheless, formal proof cd I be 
effectively combined with other validation methods to raise confidence 1 : i  2 

program's reliability. 

MAVEN offers software engineers a continuum of more and less rigorous 
validation methods. This continuum makes a wider variety of validation 
methods available t o  a larger group and applicable to a greater number of 
modules. MAVEN provides a unifying framework in which different validation 
methcds may be applied to the same progr'am. By exposing software engineers 
t o  more rigorous methods than thcje they may be familiar with, MAVEN 
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encourages learning and promotes wider use of formal methods in the 
situations where they are appropriate. 

MAVEN includes components that are at and beyond the state of the art. 
We do not propose that construction of MAVEN in its er.+Arety should start 
today. Rather, MAVEN can serve as framework for the specification, design, 
and construction of individual tools, including a verifier. If such tools 
are viewed as eventual MAVEN components and if the MAVEN philosophy is kept 
in mind when the tools are specified, then MAVEN can be assembled over a 
number of years from independently developed components. 
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absfrocf: This paper discusses issues which programming support environments 
need to address in order to successfully support software engineering. Thesc: 
concerns are divided into two categories. The first category, issues of how 
software development is supported by an environment,  includes support of the 
full life cycle, methodology flexibility and support of software reusability. The 
second category contains issues of how environments should operate, such as 
tool reusability and integration, user friendliness, networking and use of a 
central data base. This discussion is followed by an examination of Byron, an 
Ada  based programming support environment developed a t  Inkrmetrics.  
focusing o n  the solutions Byron offers to these problems, including the support 
provided for software reusability and the test and maintenance phases of tho  
life cycle. The use of Byron in project development is described briefly, arid 
the paper concludes with some suggestions for future Byron tools and user 
written tools. 

1. Introduction 

Over the past two decades, producers and consumers alike of software product.\ 
have becoiiie increasingly concerned with what has become known as thtt 
”software crisis”. As  computer hardware has evolved to enable the processing 
of more and more data a t  faster rates, the range of pra:tically solvable problems 
has  grown. Yet our  ability to manage the growing capabili t i t~ of computer 
hardware, as Djikstra 111 has stated, has lagged. In order to combat tht. 
software crisis s u c h  weapons as design methodologies and software support 
tools have come into existence. Collections of these tools have become k~iown 
a3 progranirriing support eovironmerits, and there has been a gradual realization 
that such environments can be valuable. lvie 121 identifies several benctits ot’ 
such systenis, including commonality o f  documentation, developmelit 01 ’  
standards and enhanced prograrrimor mobility u i d  retraiiiability. 



There  is much  disagreement concerning exactly which tasks a programming 
environment  should support. The DoD has issued Stoneman [ 31, a documen t  
specifying the requirements an Ada* programming environrnerlt mus t  meet,  but  
Stoneman focuses primarily on how the tools are to work in general, no t  o n  the 
needs to be fulfilled by the tools. In this paper we shall first examine issues 
which programming environments, particularly A d a  environments,  m u s t  
address. This will be followed by an examination of Byron, an  A d a  based 
programming enviroiiment developed at Intermetrics, and how Byron deals 
with these issues. We shall then examine how Byron might be applied to a 
project. 

2. Programming Support Environment Issues 

There are two sets of issues relating to programming environments. The first 
set focuses o n  how the environment supports software engineering. Included 
here are full life cycle support, support of software reusability and rnethodology 
flexibility. The  second se t  is concerned with how the environment operates 
internally, including issues of environment integration, flexibility and user 
friendliness. 

2.1 Software Engineering Issues 

The purpose of a programming erivironnient is to support software engineering. 
There are four  concerns which must be addressed in order to do this 
effectively. First, the full  software life cycle must be supported. Second, the 
user m u s t  be able to move freely from one life cycle phase to another. Third, 
the environment  must not restrict the choice of riielhodologies available to the 
user, and finally, the environrnent must actively support the reuse of software. 

2.1.1 Full LiIe Cycle Suppor t  

Frequently, the software life cycle is modeled as a discrete, linear process 1.1). 
Initially requirements are drawn up,  then a software system is specified. 
designed, implemented, tested and finally maintained. Each phase is treated 
separately, and is corriplck'd bcfore the next phase begins. If revisions mus t  be 
made, the process loops. For exarnplc, implementation might halt while thc 
design is reworked, and then the implementation would be modified. 'l'lie 
resul t  of each phase is a docurnent describing the resul ts  of that phase ( i n  
irnplernentatiori this is the actual code). Note that thcse documents are oflc3n 
of vital importance to the following phases. Icor example, it is irnpossiblc to 
test a software system without kriowing what it is required to do. Similarly, a 
dvsigri docrirneri t rnay givc! a valriahle ovc.rvirw of a syskrn to th(3 iiiaintencnw 
h*;irri. 
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In the past, automated support existed only for the implementation phase. 
Even  now, research on programming environments is mostly directed toward 
the code-compile-debug cycle 151. However, errors are cheaper and easier to 
flx if they are discovered earlier in the lifecycle. Also, i f  the computer is only 
usable for implementation, programmers will tend to concentrate on that phase. 
So the need for  good tools which assist with earlier life cycle phases is 
paramount. A s  Gutz et al. [Si report, an environment must  provide support 
throughout the life cycle. 

2.1.2 Mobility Between Li fe  Cycle Phases 

Although the view of the life cycle aa a discreet process is useful, it is n o t  
wholly adequate. Often an error is discovered which requires adjustments in an 
earlier phase. Because of deadline pressures, tlie corrections are usually made 
only in the current phase, which then bears some relation to the previous 
phases, but  is n o t  a direct descendant. Thus, the resulting implementation is 
based on an underlying design which evolved separately from the design 
document. The differences are likely to be subtle and difficult to understand, 
bu t  are almost certainly important. If, however, there is a simple way to update 
the results of a previous phase (in this case the design document),  the results 
of the phases are more likely to remain consistent with each other. 

The essential problem, therefore, is to keep the documentation for  the earlier 
phases consistent wi th  the current phase. Naturally the previous phases ;ire 
reflected in the current phase, although the information may be implicit rather 
than explicit. Fo r  instance, in Ada code some portions of the design are readily 
visible in the specifications of packages and the decisions concerning thc 
grouping of subprograms into packages. Since the packages also con taiir 
information unimportant to the design, what is needed is a tool to distill the 
design o u t  of the code. Dut in order to do  this, the entire design must bc~ 
explicitly stated, as must any other information we might want to us(* iir 

creating reports. One way of providing easy mobility between life cycle ph:tsos 
is to introduce a programming language which permits explicit stateiiicnt of 
information concerning all phaues. 

2.1.9 Methodology  Flexibi ldy 

There are rriany differerit software eriginceririg rriethodologies, aiid new' oikt*s 

appcar with frequency. Even such basic concepts m thc lift! cycle are called i r i l ~  
question 171 and rc:visc:d regularly. It has become clear [ 81 that  e n v i r o n i u e r l ~ ~  
must  be flexible enough to perrriit a variety of rriethodologies and the evolution 
o f  new methodologies, sirice dificrcnt problerns requirc! diflercnt nlc~thot!s ()I' 
solritiori. I n  ordcr to provide this flexibility, erlvironln(.nts must pcrlllit t , I 1 ( 5  

oxpression of rnarly diIT(!rc:nt kinds of information and also the cakgorizatioil o f  
this iriforrrr;ition i n  rrr;irry tliflercirt ways .  'I'he C ~ I V ~ ~ O I I I J ~ C I I  t must  the11 provitlc 
;L(:WSS to this i ~ i f o r r r i a l ~ i o r i ,  ;w w c  will sc!o below. 'l'tlp i1nport;inrc oI' []lis 

llcxihility can riot hc ovcrutakd. 
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8.1.4 So/tuare Reusability 

The software industry has recognized the need to avoid continuously rewriting 
various pieces of software. One of the major goals of Ada is the proliferation 
of large libraries of reusable packages, in order to address this need. However, 
there is a very real daiiger, even in small environments, that one programmer 
might no t  know what other programmers have already done. Even if code is 
known to exist, it niay be difficult to determine whether the package actually 
does what is necessary (and whether it has side effects), or whether it can be 
easily modified. If the only way to identify the functionality and effech of a 
package is to read the code, much of the advantage of reusing the code may be 
10s t. 

The suitability of a given package for a givcn task is best evaluated by 
examining the design of the package, if that information is accurate. Therefore 
we see that the design information should be explicitly stated, and extractable 
from the code. Furthermore, this information must be in a concise and 
standard format, so users will be able to quickly sift through the available 
packages to find what they need. It is important for  the environment to 
support the act of finding software which could be reused. 

2.2 Environment Operation Issues 

Although the support of software engineering is the primary goal of 
programming environments, issues concerning the operation of the 
environment are also important. If the tools are too clumsy to use, the 
environment will not be useful. Osterweil [ 91 identifies five characteristics 
essential to programming environments: breadth of scope and applicability, user 
friendliness, reusability of components, integration, and use of a central data 
base. The first of these includes the issues we identified above as methodology 
flexibility and life cycle coverage. The rest we shall consider below. 

User friendliness is a broad term, includiilg many fairly obvious poiiits. U s e r  
interfaces should be consistent;  help should bc on- l ine  and easily accessiblc; 
tools should perform obvious functions and be free from contradictory and 
confusing options. A less o b v i o u s  aswct of this issue is that tools should n o t  
overlap i n  function, w h i c h  will teiid tu confuse the users in  choosing which  tool 
is best suited to a specific task. Also, a use r  who  needs to perform a specific 
task should be able to find tht  tool which does that task without intilllately 
knowing all the tools. 

In order to provide a flexible methodology as discussed above, the coiiiponent 
Coolset must itself ht: flexible. 'i'his holsct  can tlieri be the. basis f o r  ncw LOOIS 
tailored to fit the projc(.t. Ilcrglantl arid Gordon IlOl comment that "if the tools 
wine first, too ofkn tht: design and devclojmeiit methods end u p  
;ic.corlltrlodatirig the bois ii~sk;ttl o f  vice v(!rsa.n 'I'his implies, ;tiiiong otticr 
t,Iiiiigs, that ;L fwility for wrrihiriing kx,ols r i i i i s t  exist. 'I'hc power of this 
;tpproach is well kilf)wrI f r o i l l  c.xp~ricrlccs wi th  the I J n i x *  prograi~iiiiiilg 
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environment. It is, however, not well understood which tools should comprise 
the toolset. Presumably, the next few years of research will begin to identify 
the essential tools. 

I t  is also important that the tools be well integrated, that is, they should work 
together to provide an abstraction which assists the user in working within a 
particular development methodology, and shields the user from the delails o f  
the environment. Thus the interaction of the tools should be controlled in 
order to avoid hidden side effects, yet reuse operations where possible. Since 
we have already acknowledged the fact that the user is expected to augment the 
environment with addition;il tools, this goal can only be partially achieved. 
However, the sel  of reusable elementary tools should certainly abide by these 
rules. 

The idea of a central tl; ita bzse which contains all the information relevant to R 

project is one of the most widely accepted concepts concerning programming 
environmeiib Il l ] .  W c  identified a need earlier for a language which can be 
used to express all LIIC iiiforxation concerning a project. It is even mow 
important that all tlliv ;iiforrrriatiori Le stored in one place. This can then be 
used to maintain v:iricus versions of a project, structure and retrieve 
information in managcnblc: pieces aild most importantly, maintain a single set 
of documents which describe the state of the project at  any given momenl. 

3. The Byron Programming Support. Environment 

We will n o w  review the Byron Programming Support Environmenl, aiicl  

examine h o w  it addresses the issues identified in the previous section. TLic, 
three important aspects of the environment are how the data enters tl ic.  

environment, how it is stored, and what tools are available to access the stored 
information. T h e  prirriary means of  expressing information to be entered i r i r o  

the Byran crivironrneiit is the Byron program developrncnt language ( P U L ) .  
The P D L  text is analyzed and stored in a structured data base (the prograiii 
library). Once stored, lhc informalion is available to the va r ious  tools wliich 
coin prise the Byron prograin rriirig support e n vir011 r ~ i e n  t. 

3.1 The Byron PDL 

l'hc Byron prograrnniirig support cnvironrnent is centered around :LI~ Ada-basvcl 
program development language (Dyron/Ada PD L) .  Byron is compatible Lo Ad;] 
since a n y  legal Ada program is also legal Byron, arid vice versa. I3yroii ~)rovi(ic~s 
a consisterit way of ciilcring information into the criviroiiiiient througliout the 
software life cycle, and thus smooths the transition from one phase to aiiotlicr. 
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,Byron constructs are included with the Ada code in the form of annotated 
commenta. (see [l2] and [13] for more detail). The Byron PDL is designed to 
augment Ada's design language abilities by formally and efficiently expressing 
information produced in the course of engineering a large software system 
which cannot be expressed in Ada, Ada has many features which assist and 
improve design; however, it has been recognized that there is information 
which is not  required by or even expressible in modern programming 
languages, including Ada, but which is nevertheless important and valuable 
1141, [15], [IS]. This information is mostly semantic in nature, concerning tlhe 
use or purpose of data items or subprograms. Consider the following Ada 
subprogram specification 

function CopyLinkedList (List : in ListPtr) returns ListPtr; 

This is sufficient for compilation; however, in order to use the function there 
are details one needs to know, such as whether a physical copy of each list 
element is made, or  merely a copy of the pointer to the list. Byron permits the 
methodical inclusion and retrieval of such information. 

Information is expressed in Byron either as Ada code or as Byron annotations. 
Annotations are formed with the prefix "--I' followed by text. In general, the 
text of an annotation is associated with the Ada construct that precedes the 
annotation. A n  annotation may also contain a keyword which categorizes the 
information. This permits the user to tailor the Byron PDL to suit many 
different tasks. For exarnple, the effect of the CopyLinkedList subprograni 
might be described with the effects keyword, e.g. 

--[Effects: Creates an  exact copy of the list passed in. A copy 
--\of each element is made, so the copied list shares no elements 
--I  with the original. 

The user may specify what  keywords may be used and what Ada context they 
are to be expected i n .  This permils the user lo define a specific developnieiit 
methodology, giving the user the rnethodology flexibility discussed above. For  
instance, a methodology might require that every use clause that is placed in 
code be followed I)y a Dyron annotation justifying the presence of the use 
clause. A Hyron kf!yword "!Jst!~..lustification" could be used to enforce this 
re q u  ire men t. 

One problern with rnethodologics is that it is sometimes diHicult to get 
programmers to adhcrc to them. Byron attcrnpls to alleviate this problern 
through the niechaiiisin of "phxqc checking," The uscr specifics what 
development phase ;L givcri keyword should be used a t  (keywords may also be 
optional). I'rograrri source is thttn categorized within the program library 
a.c:cordirig to w h a t  p1i;i.w I i :w beeii rcachcd based 011 what  keyword a~l~~ota t ior i s  
:m: prcserit. The ;iIiaIyxcr will warn a user  w h o  iridicatcs that code has reacllcd 
a phase wliirh it has riot; lrmls rri;ly also he written Lo report what phase any 
portiori of code is ci i  rre i i  tly i i i .  ' I l h i i Y ,  the "Use Justilicatioii" keyword described 
;it)(> v e  co I I  I ( I  I)(! rwl i i  i r c t l  :it i r r i  1)lc i n e n  tatiori pti;iso. W:u-iiirig rr1ess;iges wo u Id 
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indicate the absence of Use-Justification annotations when code w a s  a~lalyzed 
with a phase of implementation, 

3.2 The Byron Data Base 

The Byron system provides a database called the Ada program library, wliicll  
provides a central repository for all the information concerning a project. 'ilk 
information is primarily stored in the intermediate form known as D I A N A ,  
including both the regular Ada  syntactic and semantic information, and thch 
Byron PDL information. Tools may be written which access either kind 01'  
information, and may be independent of life cycle phase or not. The PDL code 
enters the program library through the Byron analyzer. This prograin is th(5 
f ront  end of an Ada  compiler, and provides full syntactic and semantic* 
checking, as well as the checking specified for Byron annotations. 

The program library permits Ada programs to be broken down into any n u r n b c r  
of separate catalogs containing compilation units, which are linked together tx) 
form the program library which comprises a program. Catalogs may be citlicr 
read-only resource catalogs, which contain a specific release of a s e t  0 1 '  
compilation units, o r  modifiable primary catalogs which generaly represell t ; I  

new revision under construction. Configuration management is assisted by th(. 
use of different revisions of a resource catalog. Thus, two projects might tw 
using different revisions of the same resource catalog, so that the project usit ig 
the older revision could avoid recompilations or regressions in the re ewer 
rev is ion. 

3.3 The Byron Tools 

1001s are an csseiitial part of a programming support erivironnient bul  it is t I i ( .  

selection o f  tools :inti ttic! relationship between them that charactcrizes the, 

working details of a truly integrated system. As we saw in section two. t h c > r c  
are many factors to he considered when exarniriing a prograiiiiiiiiig 
environmeril,. 'The f j y r o r i  tools have been designed with an eyc to\v: l rc l  
flexibility and srrioo tti clisse rriination of the information c.orlccrtlilig sys t < b  I  I  i 

u n d c r de  ve lo prn e n t. 

As we nokd before, a prograrrirnirig support environment rnust i~rclutlc tools t o  
support  cacti r ) h i L y c  of tht: softwarc life cycle, iirid itrust sliioot]l t]le trilli~i~io11 
between pt1ii.qf:s. 'l'tic Ilyron LooIs fall i n t o  two broad c.;Lk.gorics: tirst, t o o l 5  
w h i c h  assist with rr~ethodology and the life cycle phrncs, and st.c*orld, k)ols 

which assist with prograrrirnirig tasks without regard to a specific discipli~io 01' 

life cyclc? phwc. Mcthodology :ind life cycle tools includc an A d a  I,;~sotl 
I'D I , ,  dewrihctl carlicr, configuration manager for sourcc  arid doculllentatioIi. 
design reqii i re  r r i c  1 1  L.j lrawahili ty pickage, data dictionary syste 111 and 111 o re. 
Of the scc011(1 type of hol, L3yroii provitlcs ;I variety of k!cllnicnl progranirliillg 
koo Is for s h l i c  ; L I I  :tlysis. 'I'I~c!sc include ;in A d:i co 111 pilc r, l i r i  kc r, reco 111 pi la tio I I  

manager, global CrOss-r(!f(lrCncer, sourcc forrriiatcr, program listc r and o the rs. 
Arioltier wily o f  ciikgorixilig I lyror i  bo lv  is by t h i ?  form of t l i t b  t hey  oper;\t41 0 1 1 .  

M il.1 i y of I , l i f ~  ' x ) o  IS, i  I I  ( .I  I I  (1  i r i  g thc global cross- rc fe re I ~ C C  r ,  tlie d a b  dic ti0 11:tn.y 

I .  
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generator and the generalized document  generator, operate OII  the data 
available in the program library. Other tools, such as the pretty printer, 
statement profiler and the compile order generator, operate directly o n  A d a  
source code. 

In an earlier section of this paper, we pointed o u t  that an environrnent m u s t  
permit user constructed tools. We have seen that the Byron I'DL permits the 
user to store arbitrary information in the program library. Tools are also 
provided which the user may use to extract that information from the program 
library, as well as Ada syntactic and semantic infomiation. The first of these 
tools is a generalized document  generator, which creates documents based on 
user written specifications. These specifications are written using an interpreted 
language, BDOC, which permits the extraction of information from the 
program library and the output of that information in a forrnated form. The 
second tool is the program library access package (PLAP),  a se t  of Ada  
subprograms which provide a window into the library. The user can extract 
information about  his program, as it evolves, without being concerned with the 
internal structure of the library. Ada programs can be written which utilize the 
P L A P  to query the program library and output individually tailored reports. 
Using this package, it is possible to construct complex tools such as a hierarchy 
chart drawer o r  a program interconnectivity matrix. These two tools provide 
the elementary tools spoken of in 2.2. 

Also pinpointed earlier was the need to support reusability. I t  is not unusual 
for  a programmer to duplicate the work of an associate sirnply because no one 
knows that the work has been done before. This problem is especially 
pronounced in a distributed computing environment. Even i f  a piece of code is 
available which does a similar task, it may be nearly as dificult to modify as LO 
wri t e  from scratch, since the programmer i r i u s l  first understand h o w  the 
existing code works. The userman tool provitlvcl with Byron (-;1t1 assis1 i n  
relieving this problem. The  document created by userrt ian is a descriptio11 of  
the purpose and use of package o r  subprogr:un, and i s  interldcd to br a 
document  of the design o f  a package or  subprogram following the desigil 
methodology suggested by Liskov 1141. Other documents supporting other 
design methodologies could be produced. One call then erivisioll a desigll 
lihrary stored on a computer lo w h i c h  prograriirricrs could refer when lookirlg 
for a package to do  a specific job. Another way to encourage reusability would 
tw to create a user defined keyword "keywords." This keyword w o ~ l d  br  
Iwrrriittcd on all library u u i k ,  : L I I ~  the Lext followiiig i t  would be ;t list of  
krywords describing the functionality the unit provides. A simple prograin 
roiild be written usirig thc I'lap which  would extract the keyword list froill each 
i i r i i t ,  i i i  the 1)rogr;uii library. l h * l i  (*Icrric*iil in ltio list would bc.  cotiiparetl l~ ;L 

,I r ing  wIiic*)i the usor  o f  tIrc> prograrri would supply, and if they iiiatcIied, a11 

o v c r v i c w  of thc u r i i l  W ( J U I ~  bc printed. This would ;wsist user:, in siftilig 
1 1 )  roug11 largc. 1il)rary.i o f  sof'I,wiLr(' h find ;ippropri;ik LOOIS. 
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Documents  of this nature also help support the software life cycle, by helping 
to show the design as it currently exists, rather than as it is intended to cxist 01' 

as it used to exist. Byron also offers a tool to support  the tracking of' 
requirements, to ensure that the final result of the project does in fact fulf i l l  tltfb 
needs it was intended to. The userman and requirements tracking tools help 
Byron to support  transitions from one  phase to another, as does the fact tli;il 
many  of the tools are useful in multiple phases. 

4. Project Use of the Byron Programming Environment 

A comprehensive development system, such as Byron, is difficult to visual ize  
at work. An operational view is necessary to appreciate the ability of s u c h  ;L 

large number  b f  tools to function together usefully. The following scenario is 
presented as a brief illustration of how a hypothetical project might evolve 
using this system. 

First  of all, Byron provides methods and tools to assist management with 
organization, planning, tracking and reviewing of this project throughout its 
entire life cycle. Since the user is permitted to decide what information ia to he 
stored in Byron annotations, valuable project information such as names o f  
implementors and/or designers, project progress information, pro$ct statistics 
may be easily stored and accessed. Tools for computing the Halstead and 
McCabe complexity metrics are included, which assist software manageme,, I in  
several ways, including estimating the number of outstanding bugs and the t.ittir 

needed to complctc pieces of software. 

The requirements phase of  this project defines the problem to be soIvctl. 
defines a system design to solve the problem, and allocates the requirements 01 '  
that  design to hardware attd software. The desigit requireiiients traceability tool 
provides the facility to relate requirements to design elemcnts and niodri 1c.s. 
This is cspccially rtscful i r i  lakr phares w h e r e  the imp;ic-t of chaiigc ni;q' h, 
quickly traced. 
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bodies on the basis of annc*!ated specifications. As implementation begins in 
earnest, the user can take full advantage of the PDL aspects of Ada, and whrre 
Ada is dc?med inappropriate, Byron annotations may be defined to fi l l  the gap. 
A user defined Byron annotation "BD" or "to-be-determined" might be used ay 
a general purpose annotation tn mark these comments, and p r m i t  their 
extraction and inchsiou in documents. Two such documents might be a repor! 
on which mcdules are not yet fully implemented and what work riecds to be 
done on them, or perhaps a design document of a more dctailed nature than 
that produced by the userman tool. Coding and debugging are assisted by 
frequent reports such as cross-references and compilation listings. Wher~ 
implementatioa is complete enough, the Ada compiler will generatc object code 
(also stored in the program library) which may be linked for testing. 
Implementation and testing are further assisted by a symbolic debugger and 
performance analysis too;s. 

Once the system hegins to work,  it must be carefully tested. Software which  
has not been adequately tested cannot be comsidered reliable. ?'he Byron tools 
assist testing in several ways. First, the design requirements tracer shGws which 
modules implement which requirernentu, helping to focus *sting eHorls. 
Second, when a module is designed it's purpose is well understocd, and the test 
which should be applied are o f t en  more obvious :!,ail after implementation. 
The functionality which a module is intended to provide should be tested, no t  a 
Ypecific implementathn. Dyron annotations provide a mean- for  expressing Lhis 
information at, whatever point in the life cycle it can best be specified. 

Software sqstems spend the majority of their life cycle in maintenance phayc. 
The cost in terms of both time and money of repairs and enhancements can be 
greatly reduced by the availability of accurate docurneats which describe a 
system at varhus levels, from requirements dowu to detailed design. I f  :]I \  

engineer must read code to undcrstarid a system, it may be a consideraLlr 
amount of time before changes can be made to the system. Comments, whrll 
they exist, tend  to bc vagiic. nritl incomplete. Ijyrori provides a rii(.cha:iism for  
specifying w h d  s t r u c t u r v s  sIioiiI(I b e  corrirnentkhd and  bvtiiit type of infornir\ t iotl  
the comments should iricludr. One rnajor purpost' of Ijyron is to provide :) 

series of d o c u r n ~ r n t s  w h i c h  descrihc the systeoi, provitllng irlsigllt a1 severa l  
Icvels of corn plexity. 
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how this information can be expressed, such as the Ada framework 
surrounding the information, these limitations serve lo focus the user's 
attention on the purpose of the environment: to assist the creation of Ada 
programs. Thus, the environment supports primarily the act of producing 
programs, not  the act of using that product. This is accomplished by helping 
the user organize the information which would otherwisc be in some possibly 
ou t  of date design document, or  as a series of random comments, or  perhaps 
not at all. The user may 'hen use this organization to extract only as much of 
the information as is necessary for a specific tool to do its work, or to answer 
specific questions concerning the software system. 
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ABSTRACT 

T h i s  paper describes t h e  toolset  of a n  Ada Programming 
S u p p o r t  E m r i r o m e n t  (APSE) b e i n g  developed  a t  North American 
Aircraft O p e r a t i o n s  (NAAO) of Rockwell I n t e r n a t i o n a l .  The 
APSE is r e s i d e n t  on t h r e e  d i f f e r e n t  hosts and must  s u p p o r t  
d e v e l o p n e n t  for t h e  h o s t s  and for embedded targets. T o o l s  
a n d  developed  s o f t w a r e  must  be f r e e l y  p o r t a b l e  between t h e  
h o s t s .  

The too lse t  i n c l u d e s  t h e  u s u a l  edi tors ,  c o m p i l e r s ,  l i n k e r s ,  
debuggers ,  c o n f i g u r a t i o n  managers and  documenta t ion  t o o l s .  
G e n e r a l l y ,  t h e s e  a re  being . suppl ied by t h e  h o s t  computer 
vendors .  Other  t o o l s ,  for  example,  p r e t t y  p r i n t e r ,  c r o s s  
r e f e r e n c e r ,  c o m p i l a t i o n  order t o o l  and management too ls  have  
been  o b t a i n e d  f ran publio-domain sources, are implemented i n  
Ada a n d  a re  being p o r t e d  t o  our h o s t s .  

S e v e r a l  too ls  b e i n g  implemented in-house are of i n t e r e s t ,  
these i n c l u d e  a n  Ada Design Language p r o c e s s o r  based o n  
c o m p i l a b l e  Ada. A S t a n d a l o n e  T e s t  Environment Generator 
f a c i l i t a t e s  t e a t  tool  c o n s t r u c t i o n  and p a r t i a l l y  a u t a n a t e s  
u n i t  l e v e l  t e s t i n g .  A Code Aud i to r /S ta t i c  Analyser  permits 
Ada programs t o  be e v a l u a t e d  a g a i n s t  measures 0.” q u a l i t y .  
An A d a  Comment Box G e n e r a t o r  p a r t i a l l y  a u t o m a t e s  g e n e r a t i o n  
of header comment boxes. 

Rockwell I n t e r n a t i o n a l  North American Aircraft O p e r a t i o n s  ( N A A O )  i s  
c o n s t r u c t i n g  a f a c i l i t y  for t h e  d e v e l o p n e n t  of Ada software. The f a c i l i t y  w i l l  
s u p p o r t  a n  a v i o n i c s  i n t e g r a t i o n  l a b o r a t o r y  where boLh s i m u l a t i o n  and  embedded 
a v i o n i c s  software are t o  be developed.  Ada software d e v e l o p e n t  vi11 occur o n  
three d i f f e r e n t  hosts .  

1. A supermini w i d e l y  used i n  t h e  a e r o s p a c e  and s c i e n t i f i c  cornmunities. 

2.  Another  s u p e r m i n i  no ted  f o r  h i g h  “number c r u n c h i n g ”  horsepower. This 
p r o c e s s o r  model w i l l  s u p p o r t  t h e  s i m u l a t i o n s  and simulation developnent .  0 
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3. A prooessor &signed speoi f ice l ly  fo r  A d a  software development, on w h i c h  
a l l  ay8tea software ha8 been implemented i n  Ada. 

Ea& of the devalopent  hosts  w i l l  interfaoe t o  a user maintenance console t h a t  
supports several of the embedbd avionics processors. h e  maintenance console 
a n  pass data between the  t a rge t  prooesaor memories and t h e  hos ts  and control 
exeoution of the  targets. 

The avionias prooessors are conneoted t o  each other,  various actual  a i r c r a f t  
hardware and the  airnulation host by means of several h igh  speed data busses. 
Software i n  the  avionics processors can be tes ted w i t h  aotual hardware online 
or with hardware simulated by models i n  the simulation host. 

The hosta are t o  be networked w i t h  an Ethernet l i n e  so t h a t  software, 
associated products and developnent too ls  c a n  be eas i ly  transported. 

Roctatorell is constructing an Ada Programming Support Enviroment (APSE) for  the 
developuent f a c i l i t y .  h e  APSE cons is t s  of a s e t  of too ls  whose object ive Is 
t o  suppor t  the production of a vell-organized, s t ructured and maintainable 
software product, i n  a cost e f fec t ive  manner. The APSE i t s e l f  must be 
constructed i n  a cost e f fec t ive  manner, 

The cost  requirement on the APSE d i c t a t e s  t h a t  avai lable  too ls  be used a s  much 
as possible. This reduces t h e  potent ia l  level  of tool integrat ion,  a s  too ls  
implemented i n  i so l a t ion  fran each other generally w i l l  not share common 
interfaces .  h e  in te r face  tha t  is shared by most of the too ls  i s  the Ada 
language, however, and i t s  r ig id  standardization makes assembly of a too lse t  
from disparate  sources feasible .  

This sect ion summarbes t h e  components of the NAAO APSE and ind ica tes  the  
sources frcm which the tools  w i l l  be obtained. Section 3.0, Locally Developed 
APSE Components, describes i n  more de t a i l  sane of t h e  components t h a t  a r e  t o  be 
implemented at NAAO. 

These too ls  support the des ign  and coding phases of t h e  software development 
process. They a re  an Ada Design Language, text and program edi tors ,  compilers 
a n d  assemblers, a l i b r a r y  of primitives and common packages, and l i n k  edi tors .  

The object ive of the NAAO Ada Design Language (DL) is t o  provide a means of 
expression f o r  both control flow and data s t ruc ture  and relat ionships .  The Ada 
language i t s e l f  provides an excel lent  means fo r  expressing data s t ruc ture ,  b u t  
some other  means of describing control flow is necessary pr ior  t o  ac tua l ly  
committing a design t o  Ada code. 
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Aooordlngly, the  A d a  DL uses oanpllable Ada t o  represent data s t ruc ture  and a 
traditional Program Design Language ( p a )  t o  represent control flow. The PDL 
stataments are embedded as ooments within the A d a  specif icat ions 80 t h a t  the 
entire Ada DL descr ipt ion is oanpllable. Several too ls  a r e  avai lable  to 
support oonstruotion of Ada DL designs. These include a "TBD" package, the Ada 
DL preprocessor, t h e  prooessor f o r  the t rad i t iona l  Pat and an Ada body part 
genera tor. 

Tbe A d a  DL is  described, along with i ts  use  i n  object  oriented design, i n  more 
d e t a i l  i n  sec t ion  3.1, Ada Design Language. 

Several too ls  support t h e  ed i t ing  of Ada DL, Ada code and documentation fLles. 

2.1.2.1 Editors - Text ed i to r s  a r e  provided f o r  ed i t ing  of docmentation 
and other  non-Ada f i l e s .  These were obtained with the system software on each 
of the hosts. 

2.1.2.2 Bpa Svntax &naU,ye Editors - A syntax sens i t i ve  Editor is  one tha t  
contains the  syntax equations of the ta rge t  language i n  i t s  database. 
Templates a r e  expanded t o  t h e i r  syntac t ic  substructure.  The means e x i s t s  t o  
t raverse  between templates and de le te  templates f o r  optional constructs. 

Two of the three hosts  have Ada syntax sens i t ive  ed i to r s  ava i lab le  f ran the 
system vendor. I n  one of these, i n i t i a l  entry of a f i l e  b e g i n s  w i t h  the 
template [compilation], which by repeated expansion and replacement of 
templates w i t h  t e x t ,  is converted t o  the desired code. The templates have t h e  
same names a s  the  syntax equations fran the Ada LRM. When adding t o  an 
ex is t ing  f i l e ,  i t  is  necessary t o  en ter  the s t a r t i n g  template e .& 
[later-declarative-item], [statement] manually (and one must know what they a re  
ca l led) .  

0 

On the A d a  based host, a construct is  pranpted by entering an i n i t i a l  keyword, 
e.g. "proceduren, nlfn, and requesting t h e  ed i tor  format the f i l e .  It 
i d e n t i f i e s  the construct and expands i t  i n t o  Its components. 

2.1.2.3 Source F o r m a t t e r m  &inLed. - The source formatter reformats 
ex is t ing  Ada source i n t o  a consistent form. The level  of statement indentation 
i s  made proportional t o  the nesting depth. Spaces and l i n e  breaks a r e  added t o  
improve readabi l i ty .  Declarations and l i n e  comments a r e  aligned where 
appropriate. The source formatter was obtained f ran  a public domain source, Is 
wr i t ten  i n  Ada and w i l l  be modified t o  improve funct ional i ty .  On the Ada based 
host ,  the source formatter i s  in tegra l  w i t h  the edi tor .  

Program developnent w i l l  occur i n  d i f fe ren t  environments i n  the developnent 
f a c i l i t y .  Native mode code w i l l  be generated f o r  initial program t e s t ing  and 
f o r  tool implementation. Code w i l l  be generated f o r  the simulation host on 
t h a t  host. Ada wr i t ten  f o r  the simulation host must int .erface with ex is t ing  
FORTRAJJ code. Ada code w i l l  be writ ten f o r  the embedded processors. This code 
m u s t  in te r face  w i t h  ex is t ing  JOVIAL code. 0 
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2.1.3.1 - Each of the  deve lopnen t  hos t s  h a s  a 
V a l i d a t e d  Ada oompiler available fram the system vendor.  Each h a s  a n  
associated library manager for c r e a t i n g  and  m a i n t a i n i n g  Ada program l i b r a r i e s .  

2.1.3.2 dQa a - Cross c o m p i l e r s  for t h e  
embeddad p r o c e s s o r  are available or w i l l  be a v a i l a b l e  for  a l l  our deve lopnen t  
h o s t s ,  a l t h o u g h  none have  been v a l i d a t e d .  For two of t h e  h o s t s ,  t h e  system 
vendor  will be s u p p l y i n g  t h e  cross compi le r .  for the other,  one of s e v e r a l  
possible t h i r d  p a r t y  vendors  w i l l  be selected. 

The d i f f e r e n t  ve.ndors p r o d u c t s  are c u r r e n t l y  b e i n g  e v a l u a t e d .  The selected 
p roduo t  w i l l  hold a v a l i d a t i o n  certif icate or o t h e r w i s e  have  been demons t r a t ed  
t o  c o r r e c t l y  compi le  t h o s e  features required by t h e  a v i o n i c s  software. 

2.1.3.3 J(mfAL Processor Cross - This c o m p i l e r  w i l l  
t r a n s l a t e  JOVIAL t o  the  object code of t h e  a v i o r i c s  processor. The object f i l e  
format w i l l  be compatible w i t h  t h a t  g e n e r a t e d  by t h e  A d a  compilers f o r  t h e  
avionics prooessors. It w i l l  be possible  fo r  J O V I A L  t o  ca l l  Ada and v i c e  v e r a a  
w i t h o u t  t h e  u s e  of i n t e r f a c e  r o u t i n e s  when t h e  parameter t y p e s  have  a n a l o g u e s  
i n  both languages. The JOVIAL cross compiler w i l l  be o b t a i n e d  from t h e  Ada 
cross compiler vendor.  

2.1.3.4 Processor Cross - These assemblers w i l l  run on t h e  
h o s t s  and  g e n e r a t e  a v i o n l c s  p r o c e s s o r  o b j e c t  code. The object  f i l e  formats 
w i l l  be compatible w i t h  t h a t  gene ra t ed  by t h e  Ada compilers for t h e  a v i o n i c s  
proce ssors. The Ada cross compiler vendors  each have  compatble c r o s s  
assembler a a v a i l  able. 

2.1.3.5 XQ& FORTRAN e - The n a t i v e  mode FORTRAN compi l e r  on 
t h e  s i m u l a t i o n  h o s t  w i l l  g e n e r a t e  o b j e c t  f i l e s  compatible w i t h  those of t h a t  
h o s t ' s  Ada canpi ler .  Such a compi le r  is a v a i l a b l e  fran t h e  system vendor.  

2-1.4 -&Primitives 

The l i b r a r y  of p r i m i t i v e s  and common packages  w i l l  be a c o l l e c t i o n  of commonly 
used f u n c t i o n s  i n  t h e  areas of n a v i g a t i o n ,  weapons d e l i v e r y  and math  f u n c t i o n s .  
I n i t i a l l y ,  a s e t  of p r i m i t i v e s  w i l l  be i d e n t i f i e d  for i n c l u s i o n  i n  t h e  l i b r a r y  
and implemented when t h e y  are  f i rs t  needed, A d d i t i o n a l  p r i m i t i v e s  w i l l  be 
developed  as  t h e  need for them is i d e n t i f i e d .  

Some t y p e  of "browser" u t i l i t y  t h a t  w i l l  e n a b l e  t h e  p o t e n t i a l  u s e r  t o  
i n t e l l i g e n t l y  search t h e  l i b r a r y  is be ing  p lanned .  

2.1 .5  Linb Editors 

The l i n k e r s  i n  t h e  APSE s h a l l  have t h e  means t o  de t e rmine  t h a t  a l l  modules 
dependent  on a module t h a t  h a s  been recompiled have  a l so  been r ecompi l ed ,  or 
t h a t  o t h e r w i s e  t h e  full set  of object modules i n v o l v e d  i n  t h e  l i n k  e d i t  i s  i n  a 
consi st en t sta te. 

2.1.5.1 && Link Editors - These l i n k e r s  w i l l  l i n k  ob jec t  f i l e s  produced by 
t h e  h o s t a '  n a t i v e  mode Ada compilers t o  produce a n  image e x e c u t a b l e  on t h e  
hos t .  Ea& h o s t  system vendor h a s  a u e e n t e d  i t s  l i n k  ed i to r  t o  p rov ide  t h e  

0 
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r e q u i r e d  cons i s t ency  ohecking. 

2.1.5.2 &&&a Pracessor _Cross Linker- These l i n k e r s  w i l l  generate 
e x e c u t a b l e  a v i o n i o s  p rooesso r  images from o b j e o t  f i l e s  produced by the  Ada 
cross compiler, the JOVIAL cross compi le r  and t h e  a v i o n i c s  p rocesso r  c r o s s  
assembler. Ihe a v i o n i c s  processor images CBN be executed  i n t e r p r e t i v e l y  by 
s i m u l a t o r s  o n  t h e  h o s t  or downloaded t o  a n  a v i o n i c s  processor .  

The A d a  environments  on t h e  hos t s  w i l l  be i n t e g r a t e d  w i t h  t h e  symbolic  
debuggers  provided  w i t h  t h e  h o s t s '  operating systems. Symbolic debuggers  w i l l  
be procured for t h e  a v i o n i c s  p r o c e s s o r s  which w i l l  s u p p o r t  s t a n d a r d  debugging 
o p e r a t i o n s  wi thou t  i n c u r r i n g  a d d i t i o n a l  overhead i n  t h e  target. A t o o l  w i l l  
exist t o  create a n  environment  i n  which to  tes t  Ada compi la t ion  units i n  a 
s t anda lone  mode. 

A data bus moni tor  w i l l  suppor t  the c a p t u r e  and d i s p l a y  of  selected b u s  d a t a  
and t h e  s i m u l a t i o n  of bus t r ansmiss ions  t o  f a c i l i t a t e  i n t e g r a t i o n  tes t ing.  

The developnent  h o s t  w i l l  have t h e  s i m u l a t i o n  and s u p p o r t  t o o l s  necessary  t o  
e x e c u t e  t h e  a v i o n i c s  s o f t w a r e  in a n  i n t e g r a t e d  mode w i t h  t h e  a c t u a l  o r  
simulated aircraft hardware or i n  a so f tware  e n v i r o m e n t  only.  This i n c l u d e s  a 
host s i m u l a t o r  designed t o  exeoute  f l igh t  so f tware  i n  n a t i v e  code suppor ted  by 
e n v i r o m e n t  programs and I/O s imula ted  i n  sof tware .  The h o s t s  w i l l  have t a r g e t  
p rocesso r  s i m u l a t i o n  i n c l u d i n g  inpu t /ou tpu t  and i n t e r r u p t  s imula t ion .  

2.2.1 WSvmbolicDebunners 

These t o o l s ,  used f o r  debugging n a t i v e  mode programs on t h e  h o s t s ,  s u p p o r t s  
examinat ion  and d e p o s i t ,  s e t t i n g  of b reakpo in t s  and watchpoin ts ,  stepllse 
execu t ion  and trace, all referenced t o  Ada source  s t a t e m e n t s  or d e c l a r a t i o n s .  
The debuggers  are p a r t  of t h e  h o s t  system vendors '  so f tware  suppor t  packages, 
but  each h a s  been modi f ied  t o  suppor t  t a s k i n g  and o t h e r  unique features of t h e  
Ada language.  

2.2.2 BvionicsProcessorlnterfaceandDebunner 

These t o o l s  s u p p o r t s  downline l o a d  of  execu tab le  images t o  t h e  a v i o n i c s  
p rocesso r s ,  execu t ion  c o n t r o l  of t h e  a v i o n i c s  p r o c e s s o r s  and t r a n s m i t t a l  Of 
s t a t u s  in fo rma t ion  back t o  t h e  hos t s .  Symbolic debugging i s  suppor ted  frcm the 
h o s t s .  Symbol t a b l e  informat ion  is mainta ined  in t h e  h o s t s  and n o t  downloaded 
t o  t h e  a v i o n i c s  p rocesso r s .  Target debugger suppor t  is provided by a l l  the Ada 
c r o s s  compiler  vendors ,  but a d d i t i o n a l  i n t e r f a c i n g  t o  s u p p o r t  N A A O '  s part icular  
test  e n v i r o m e n t  w i l l  be required. 

2.2.3 -Environment Iienerator 

This t o o l  de t e rmines  t h e  i n p u t s ,  o u t p u t s  and e x t e r n a l  e n t r y  p o i n t s  o f  a se t  o f  
Ada programs under t e s t .  The t o o l  p r a n p t s  t h e  u s e r  for i n p u t s ,  e x e c u t e s  one of 
t h e  specified programs and d i s p l a y s  t h e  ou tpu t s .  Pre-canned f u n c t i o n s  can  be 
specif ied f o r  t h e  i n p u t s  and t h e  program executed  r e p e a t e d l y  w i t h  v a r i a t i o n  of 
a n  independent  v a r i a b l e ,  such as time. Outputs  can be p l o t t e d  a g a i n s t  i n p u t s  
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o r  the independent var iable ,  

The Standalone Teat Environment Generator w i l l  be implemented in-house a t  N A A O ,  
aud I S  de8Wlbed i n  more d e t a i l  i n  a subsequent section. 

The bus monitor w i l l  interface with the various data busses i n  the  avionics 
int*WauOn laboratory and perform the following functions. The bus monitor 
W i l l  be 1mPlemented by augmenting ex is t ing  capabi l i t i es .  

Generate real time displays of seleoted bus data. 
Generate p ro f i l e s  of bus data by message type and subtype .  
Generate simulated bus  data f o r  test stimulation. 

202.5 HsULAvionicsProcessor- 

Simulators f o r  the avionics processors w i l l  be avai lable  t o  support t h e  t e s t ing  
of avionics processor images t h a t  would otherwise require  the actual  hardware. 
A conventional simulator w i l l  i n te rpre t  executable images down t o  the 
in s t ruc t ion  f i e l d  level .  A f a s t e r  simulator i n  which t h e  A d a  code is compiled 
i n t o  procedure calls on the host t ha t  duplicate the computations of t h e  
avionics processors without actual ly  in te rpre t ing  a t  the b i t  l eve l  is a l so  
being acquired. Both of t h e s e  a r e  avai lable  f ran  the Ada cros.1 compiler 
vendors. 

A simulator is being implemented i n  Ada inhouse tha t  w i l l  be capable of 
concurrently s imulat ing several  avionics processors, w i t h  interprocessor 
oommunica t ions implemented a s  t ransfers  through common memory buffers. 

2.2.6 

The documentation generators w i l l  construct data dic t ionar ies  fran sets of Ada 
programs. They w i l l  construct t r ee s  of c a l l s  and context references (WITH'S). 
A header comment box generator w i l l  summarize t h a t  information i n  the program 
headers t ha t  c a n  be extracted automatically fran the program source. These 
processors w i l l  accept a list of f i l e s ,  or scan  a l i n k  ed i to r  command f i l e  and 
process the sources f o r  all the i n p u t  modules f o r  t h e  l i n k i n g  of the executable 
image. A report formatter/word processor w i l l  be avai lable  f o r  general 
do cum en t p r  e pa ra t ion.  

2.2.6.1 Dictionarv Generator - This tool scans a set  of Ada program 
source f i l e s  and records the full  context of declarations,  recognizing Ada 
scope and v i s i b i l i t y  rules. It generates a data dictionary wi th  locat ions of 
declarat ions,  s e t  references and use references i n  a format compatible with 
required docmentation. This will be Implemented by augnenting public domain 
software, implemented i n  Ada. 

2.2.6.2 m- - Generator - This u t i l i t y  does a s c a n  of a s e t  
of Ada source programs. For subprograms i t  constructs t r e e s  of calls and 
called-by references. For packages, i t  oonstructs t r e e s  of context clause 
(WI'IH statement) references. The generated repor t s  a r e  i n  a format compatible 
w i t h  required documentation. This tool will also be obtained by augnenting a n  
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existing publ io  domain program. 

2.2.6.3 Header Comment B Q X m  - This t oo l  scans t h e  source of an Ada 
compilation u n i t  f o r  t h a t  information which is  requ i r ed  t o  be i n  t h e  header 
comment box, such as i n p u t s  and outputs ,  subprogrms ca l l ed  and called-by, 
imported d a t a  structures and rou t ines ,  and o t h e r  r e sources  used. It c r e a t e s  a 
new header comment box or updates t h e  ex i s t i t l g  one. This t o o l  i s  being 
implemented in-house i n  Ada and i s  described i n  more de t a i l  i n  a subsequent 
sect ion.  

2.2.6.4 &.Q,QLL Formatter - These u t i l i t i e s  process a f i l o  of t e x t  w i t h  
inteP8per8ed fo rma t t ing  commands. They perform word processing func t ions  such 
as r i g h t  margln alignment,  i nden ta t ion ,  assignment of heading nuubers, t a b l a  of 
con ten t s  gene ra t ion  and o the r s .  Several  of these are already i n s t a l l e d  i n  o w  
f a c i l i t y ,  from various sources.  They are t h e  most widely used support  tools i n  
t h e  l abora to ry .  

202.7 SuDDorf 

These t o o l s  support  t h e  adherence t o  software s tandards and t h e  con t ro l l ed  
maintenance of source and documentation Pi lea .  

2.2.7.1 lzpde Q - The code a u d i t o r  scans t h e  source for 
an Ada compilation u n i t  and generates  a r e p o r t  of a r e a s  of non-conformancb t o  
software standards,  a s  spec i f i ed  i n  t he  Ada S t y l e  Guide  t h a t  was developed 
j o i n t l y  by seve ra l  Rockwell d iv i s ions .  

2.2.7.2 Confinuration Control Svstem - The configurat ion con t ro l  sys teu i  w i l l  
c r e a t e  and maintain l i b r a r i e s  of control led f i l e s ,  which c a n  be Ada DL s c w c e .  
program source,  documentation cr any o the r  t ex tua l  material. It w i l l  t r ack  
changes by a s s o c i a t i n g  t h e m  w i t h  re t r ieva l  and replacement of l i b r a r y  elements. 
It w i l l  monitor access  and be a b l e  t o  generate  a h i s t o r i c a l  record of t h e  
accesses  t o  each element i n  a l i b r a r y .  Each h o s t  h a s  such software a v a i l a b l e  
frun t h e  system vendor.  

The following s e c t i o n s  deacribc i n  more d e t a i l  some of t h e  t o o l s  t h a t  a r e  k i n g  
lnplemented in-house a t  NAAO.  Of' p a r t i c u l a r  i n t e r e s t  a r e  the  following. 

1 .  Ada Design Language processor,  t h a t  w i l l  permit embedd ing  a t r a d i t i o n a l  PI ; i  
w i t h i n  compilable Ada s p e c i f i c a t i o n s .  

2. Standalone Test Environment Ce:ierator, t h a t  w i l l  d e t e r m i n e  t h e  i n p u t s  and 
ou tpu t s  of a program u n d e r  tist, then generate  i n p u t  va lues ,  execute t h e  
program and capture  and display the outputs .  

3 .  Cade AuOitor/Static Analy3er, which w i l l  permit Ada programs t o  be checked 
f o r  conformity w i t h  3uf twdr .e  s tandards,  and be evaluated a g a i n s t  va r ious  
measures of qual i t y  . 



4. Ada Header Comment Box Generator, which w i l l  a u t o m a t e  c o l l e c t i o n  of some of 
the  information required t o  be i n  t h e  h e a d e r  comment box of program units. 

3.1 MaDesirm- 

Traditioaal PDLs, l i k e  those w i d e l y  used  i n  t h e  oomputing community o v e r  t h e  
past deoade are good a t  desoribing c o n t r o l  f l a t ,  b u t  poo:. a t  d e s c r i b i n g  
s t r U O t L U . e ,  h i e r a r a h y ,  data r e l a t i o n s h i p s  a n d  i n t e r f a c e s .  

A d a  spec i f ica t ions  are good a t  d e s c r i b i n g  these t h i n g s ,  bu t  do n o t  d e s c r i b e  
c o n t r o l  flow. Use of c o m p i l a b l e  Ada to  describe c o n t r o l  f low is  awknard, a t  
best, because  i t  does not p e r m i t  s p e c i f i c a t i o n  of deta i l  to  be deferred. 

The i d e a  Of u s i n g  c o m p i l a b l e  A d a  as a d e s i g n  language  i s  gaining a c c e p t a n c e  
because i t  specifies a t  d e s i g n  time what t h e  software p r o d u c t  w i l l  l o o k  l i k e .  
1.e. the A d a  specs are a form of % o n t r a c t n  f o r  t h e  software t h a t  13 t o  be 
imp1 emented. 

Traditional PDLs are coming t o  be regarded a s  a decade o l d  technology 
l i t t l e  more t h a n  a n  improvement o n  flowcharts. 

t h a t  i s  

The NAAO A d a  Design Language combines couip i lab le  Ada w i t h  Reconfigurable Design 
Language ( R D L ) ,  a t r a d i t i o n a l  PDL wi th  a n  Ada-like s y n t a x ,  t o  o b t a i n  t h e  
b e n e f i t s  of each. RDL was implemented a t  a n o t h e r  Roche l l  d i v i s i o n  i n  Ada a n d  
c a n  be i n s t a l l e d  o n  any host w i t h  a v a l i d a t e d  A d a  compi le r .  Aside fran t h e  
s y n t a x  change t o  make i t  more Ada-like,  i t  is  similar i n  a p y a a r a n c e  and 
capab i l i t i e s  t o  a commercial ly  a v a i l a b l e  PDL wide ly  used i n  t h e  computing 
community for  over a decade. 

0 

Use of this d e s i g n  language  c o n s i s t s  of t h e  f o l l o w i n g  steps.  

1 .  D e s c r i p t i o n  of t h e  s t ruc ture ,  o p e r a t i o n  and i n t e r f a c e s  o f  a d e s i g n  u s i n g  
Ada s p e c i f i c a t i o n s .  

2 .  C o n s t r u c t i o n  of t h e  Ada bodies, s t a r t i n g  w i t h  t h e  s p e c i f i c a t i o n s ,  t h e n  w i t h  
further d e v e l o p n e n t .  

3. D e s c r i p t i o n  of t h e  c o n t r o l  flow w i t h i n  u n i t s ,  u s i n g  RDL s t a t e m e n t s  i n  
s p e c i a l l y  marked comments. 

3 .1 .1 .1  DevelDunent nf Asia S D e c a C a m i  - The d e s i g n  language  u s e r  first 
i d e n t i f i e s  t h e  o b j e o t s  t o  be implemented. These s u g g e s t  t h e  t o p  l e v e l  package 
s t r u c t u r e  of t h e  d e s i g n .  m e n ,  t h e  a c t i o n 8  t o  be performed o n  these o b j e c t s  
a r e  i d e n t i f i e d ,  t hese  suggest t h e  procedures and  f u n c t i o n s  these packages w i l l  
s u p p o r t .  

E x t e r n a l l y  v i s i b l e  data  s t r u c t u r e s  a re  i d e n t i f i e d ,  t h e n  Ada t y p e s  a n d  o b j e c t s  
a r e  d e f i n e d  t o  r e p r e s e n t  these. P a r a l l e l  e v e n t  streams suggest c r e a t i o n  of 
t a sks  t o  suppor t  then .  Textua l  comments a r e  added t o  f u r t h e r  e x p l a i n  t h e  
purpose of t h e  c o n s t r u c t s  so d e f i n e d .  
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3.1 *1.2 bevalorment Pt Ma BmlUa - men, usin& an Ada body part builder,body 
parts for the spalfioations are areated. D a b  s t ruotures  not t o  be v i s i b l e  
external ly  are defined within the  bodies of the packages and subprograms. Use 
of the avai lab le  'TBD" package permits the  uer  t o  defer assigning spec i f i c  
t y p e s  t o  Ada objeota. 

3.1.1.3 BpL - h e  control flow w i t h i n  the 
subprogram bodies is now deaigned and specif ied w i t h  RDL procedures. The RDL 
statements are enalosed i n  apeaial ly  marked Ada aomments t o  keep the  en t i r e  

can be made by the RDL. Use of RDL permits the ex is t ing  RDL rrocessor to  be 
used t o  generate data d ic t ionar ies  and ca l l i ng  t rees .  

Large designa may require several  i t e r a t i o n s  of t h i s  process before the design 
i s  oomplete. 'Ihe completed design cons is t s  of A d a  specs with embedded textual  
comments and Ada bodies with embedded RDL procedures and comments. 

design descr ipt ion compilable. Referen- t o  data defined i n  the pure  A d a  par t  

3.1.2 BdaDesl.nnLannuaneUtilities 

Several too ls  and u t i l i t i e s  are avai lable  t o  a s s i s t  i n  the generation of hda DL 
desar i ptions. 

3.1.2.1 Paclcana - This TBD package, whioh is public domain software, 
provides t y p e s ,  objects ,  function3 and a procedure which can be referenced in a 
design when the actual type of the object or subprogram parameter is not known. 
TBD v a l u e s  for the  quant i t ies  i n  package SYSTEM, such as maximum integer ,  
m a l l e s t  f ixed point de l ta ,  etc. are a l s o  defined. A 3  a des ign  i s  evolved, t h e  
TBD quan t i t i e s  a r e  replaced w i t h  the actual  objects. A l l  names i n  the package 
contain the  substring "TBD" so they can  be located w i t h  an ed i to r  search. 

0 

3.1.2.2 &?&Partoeneratar- This tool generates a body part fran an Ada 
specif icat ion.  It is  avai lable  a s  a primitive on the Ada based developnent 
host, and also f ran a public domain source for  any processor w i t h  a validated 
Ada compiler. 

3.1.2.3 RL - plis u t i l i t y ,  which w l l l  1 imp lemen ted  
in-house, 8caw t h e  Ada Design Language descr ipt ions and records a l l  the type, 
objeat,  subprogram and task specif icat ions.  It ex t r ac t s  the RDL procedures 
fran t h e  A d a  bodies and generates RDL declarat ions for the objects  declared in 
the  A d a  and referenced i n  the RDL. It formats the RDL i n t o  a form acceptable 
t o  the RDL processor and s u h n i t s  i t  f o r  generation of an RDL report .  

3.1.2.4 BpL Prooesaor - The RDL processor, cur ren t ly  i n s t a l l ed  on two of our 
hosta, generatea a formatted report  from an RDL description. It a l s o  produces 
a data diotionary and c a l l i n g  t r e e s  fo r  the segments (subprograms). 

3.2 

Traditionally,  u n i t  level  tes t ing  is done by implementing special  purpose data 
generators and data monitors, l inking everything together,  running the  progracr 
under t e s t ,  then analyaing the data. The next rout ine requi res  new data 
generators and monltora. 
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The Standalone T e s t  E n v i r o m e n t  Generator (STEQ) being d e v e l o p e d  a t  NAAO w i l l  
a O t  a8 d a b  g e n e r a t o r  and monitor for a large class of subprograms a n d  w i l l  
partially a u t u u a t e  the un i t  test proceas .  

A un i t  t o  be t e s t e d  i n c l u d e s  a subprogram and i t s  dependent  u n i t s .  They a re  
first compiled c l e a n l y .  

'he STEU w i l l  s o a n  t h e  unit u n d e r  test, i d e n t i f l  t h e  calling p a r a m e t e r s ,  t h e n  
d e t e r m i n e  t h o s e  o b d e o t s  d e c l a r e d  a t  a higher scope t h a t  are u s e d  b u t  n o t  set  
( i n p u t s )  and set  b u t  n o t  used  ( o u t p u t s ) .  It w i l l  detect those t h a t  are b o t h  
set a n d  u s e d ,  as these could be i n p u t s ,  o u t p u t s ,  both or n e i t h e r .  

The S a  w i l l  p r a n p t  the tester f o r  t h e  names of i n p u t s  and o u t p u t s  n o t  
i d e n t i f i e d  i n  t h e  s c a n ,  It w i l l  t h e n  g e n e r a t e  a n  Ada shell t h a t  s u p p l i e s  t h e  
program's  i n p u t s  a n d  captures i t s  o u t p u t s .  This w i l l  be compiled and  l i n k e d  
w i t h  the program under  test. S t u b s  w i l l  be p r o v i d e d  f o r  subprogram t h a t  a r e  
n o t  provided .  

The STMI w i l l  t h e n  p r a n p t  fo r  t h e  v a l u e s  of t h e  i d e n t i f i e d  i n p u t s  and pass them 
t o  t h e  target program. It w i l l  e x e c u t e  t he  progrsin under  t e s t ,  t h e n  d i s p l a y  
t h e  v a l u e s  f o r  the i d e n t i f i e d  o u t p u t s .  E x c e p t i o n s  r e t u r n e d  fran t h e  t a rge t  
program w i l l  be i d e n t i f i e d .  F a c i l i t y  t o  g e n e r a t e  a n  e x c e p t i o n  f r a n  a s t u b  w i l l  
a lso be s u p p o r t e d .  

An OUT parameter fran a s t u b  is regarded as a n  i n p u t .  

A command l a n g u a g e  w i l l  be provided  f o r  r e p e a t e d l y  e x e c u t i n g  t h e  program u n d e r  
t e s t  while v a r y i n g  t h e  v a l u e s  f o r  selected i n p u t s .  The command language w i l l  
be a s u b s e t  of Ada. P l o t t i n g  and data  r e d u c t i o n  features are t o  be provided .  

The purpose  of t h i s  t o o l  is t o  s u p p o r t  t h e  enforcement  of software s t a n d a r d s  
and  good programming practices.  It w i l l  gather s ta t i s t ics  t h a t  may be 
i n d i c a t i v e  of t h e  use or non-use of these s t a n d a r d s  and prac t ices  and  p r e p a r e  a 
report t h a t  m i g h t  serve a s  t h e  s t a r t i n g  p o i n t  f o r  a code rev iew or s t r u c t u r e d  
walkthrough.  The code a u d i t o r  w i l l  g a t h e r  t h e  following t y p e s  of s t a t i s t i c s .  

1 .  The amount of commentary r e l a t i v e  t o  t h e  amount of code w i l l  be d e t e r m i n e d .  
T e x t u a l  comments w i l l  be d i s t i n g u i s h e d  fran d e l i m i t i n g  comments ( b l a n k  
l i n e 3  and  l i n e s  of dashes, e tc . ) .  O f  c o u r s e ,  i t  w i l l  be u n a b l e  t o  
d i s t i n g u i s h  a u s e f u l  comment f r a n  something like "-- Mary had a l i t t l e  
lamb". 

2.  Measures of program complexi ty  w i l l  be developed ,  such as  nimber  of nodes 
i n  a program's  directed graph, t h e n  s t a t i s t i c s  w i l l  be developed  from our 
e x p e r i e n c e  w i t h  implementing and  m a i n t a i n i n g  these programs r e l a t i v e  t o  
t h e i r  measured complexi ty .  

It is  g e n e r a l l y  regarded t h a t  o v e r l y  complex program u n i t s  c a u s e  
main tenance  problems. However, s imp le r  programs mean more program u n i t s  
e r e  n e c e s s a r y ,  and t h i s  complicates t h e  i n t e g r a t i o n  process. 
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The nmber of s u b t y p e s  8nd derived t y p e s  d e f i n e d  a n d  t h e i r  f r e q u e c c y  of 
r e f e r e n o e  versw the irequenay of r e f e r e n c e  of t h e  p r e d e f i n e d  t y p e s ,  Use 
of s u b t y p e s  r n d  derived types makes better w e  of t h e  s t r o n g  t y p i n g  
features of A d a .  

For subprOgra1~8,  t h e  nunber  of parameters passed v e r s u s  t h e  d i r e c t  
r e f e r e n o e s  t o  objects declared a t  a higher soope (global v a r i a b l e s ) .  Use 
of global r e f e r e n c e s  i s  regarded by same as  p r o d u c i n g  h a r d e r  t o  read code.  

Stat is t ics  on i d e n t i f i e r  l e n g t h  w i l l  be gathered. Average l e n g t h ,  
d i s t r i b u t i o n  of l e n g t h s  and  f r e q u e n c y  of r e f e r e n c e  of v a r i o u s  l e n g t h s  w i l l  
be recorded. These s t a t i s t i o s  w i l l  be g a t h e r e d  for v a r i o u s  c l a s s e s  of 
i d e n t i f i e r s ,  e.g. scalars, r e o o r d  components,  FOR l o o p  i n d e c e s ,  subprogram 
formal parameters, eto. Use of o v e r l y  s h o r t  i d e n t i f i e r  names i s  r e g a r d e d  
a s  a poor p r a c t i c e ,  b u t  i t  i s  n o t  clear t h a t  longer is always better. 

Use of PRAGMAs, p a r t i c u l a r y  PRAGMA SUPPRESS, w i l l  be recorded and 
s m n a r i z e d .  

Placement  of more t h a n  o n e  t y p e  or object d e c l a r a t i o n  o n  a l i n e ,  or mor-e 
t h a n  o n e  e x e c u t a b l e  s t a t e m e n t  on a l i n e  w i l l  be Slagged. Code so  w r i t t e n  
i s  l i k e l y  t o  be harder to  read. 

Types and objects  declared b u t  n o t  r e f e r e n c e d ,  ob jec ts  declared a t  a h i g h e r  
scope t h a n  n e c e s s a r y  and u n i n i t i a l i z e d  ob jec ts  w i l l  be flagged. 

The number of d e c l a r a t i o n s  and  e x e c u t a b l e  s t a t e m e n t s  fo r  each subprograrrj 
w i l l  be recorded. These v a l u e s  w i l l  be p r o v i d e d  both  i n c l u d i n g  a n d  
e x c l u d i n g  n e s t e d  subprograms. The maximum n e s t i n g  d e p t h  for  c o n t r o l  
s t r u c t u r e s ,  subprograms and t a s k s  w i l l  a l s o  be d e t e r m i n e d  f o r  each program 
unit. 

The nwnber of GOTOs and jump target labels (<<LABEL>>, n o t  LABEL:) will be 
counted ,  and a mea~ure of t h e  "branching complexity" of a routine will be 
de te rmined .  

Unlabelled blocks and loops w i l l  be flagged. Use of these labels o f t e n  
p r o v i d e s  a v d u a b l e  form of commentary. 

D e c l a r a t i o n  of typed  c o n s t a n t s  vs .  u n i v e r s a l  n u n b e r s  w i l l  be flagged when 
appropriate .  Use of  a DELTA o ther  t h a n  a power of 2 fo r  f i x e d  p o i n t  t y p e s  
w i l l  be detected. Use of a r a d i x  other  t h a n  2 ,  8 ,  10  or 16  w i l l  a l s o  be 
flagged. 

Software s t a n d a r d s  a t  NAAO specifl t h a t  each c o m p i l a t i o n  unit be headed  by a 
comment box t h a t  c o n t a i n s  d e t a i l e d  i n f o r m a t i o n  aborlt t h e  u n i t .  

Among o t h e r  t h i n g s  i t  is required t h a t  t h e  comment box l i s t  a l l  s e t s  and 
r e f e r e n c e s  t o  global v a r i a b l e s  (ob jec ts  d e c l a r e d  a t  a higher scope), a l l  
subprograms and  tasks c a l l e d ,  task e n t r i e s ,  e x c e p t i o n s  g e n e r a t e d  ( o t h e r  t h a n  
t h e  usual Ada e x c e p t i o n s )  and e x c e p t i o n s  h a n d l e d ,  and a l l  packages, tasks and 
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subprograms defined internal ly .  

The header ocmment box generator w i l l  detect  the presenoe of these features a n d  
Create t h e  part of the  header oomment box t h a t  desaribes them. If already 
Present, t he  exlot ing comment box w i l l  be revised. 

Gathering t h i s  information fo r  the  oomment box !.ti a tedious t a s k  which 
implmentercc do without enthuaiam, and t h u s  without a t t en t ion  t o  correctness 
and de ta i l .  FVequently the information is ignored when i t  is  needed (say, by a 
tiger team ca l led  i n  t o  f i x  a high-priority problem) because i t  is asamed t o  
be incor rec t  an6 out of date. Automating i t s  generation shoulJ great ly  
increase i t s  r e l i a b i l i t y  and usefulness. 

The A d a  develoment enviroment descr ibed  here meets most of the needs of our 
current  and near fu ture  developnent requirements. The object ives  of a cost  
ef fec t ive  APSE implementation and a ve r sa t i l e  developnent environment a r e  
expected t o  be satisfied. 
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ABSTRACT 

SOFTWARE ENGflEERINO ENVIRONMENT 

TOOL BET IMTEGRATIOIO 

Yilliaa P. Selfribge 

Rookuell International Corporation 

12214 Lakowood Boulevard 

h u n e p ,  Califorals 90241 

Telephone: 213 922-2938 

Spaae Transportation ljystea Division (STSD) Enginesrlng has a 
program to prorote exoellenoe within the engineering funotion. 
Thii program resulted in a Oapltal funded faollity based on a VAX 
oluster oalled the Rockwell Operational Software Engineering 
System (ROSES). "hi6 paper ooncentrates on the second phase of a 
three phase plan to establish an integrated software engineering 
environment for ROSES. It discusses briefly phase one whlch 
establisher the basic capability for a modern software 
development environment to include a tool set, training and 
st-dards. 

Phase two i s  tool set Integration. The tool get iS primarily 
off-the-rhelf tools aoquired through vendor6 or government 
agenoier (public domain). These tools were plaoed into 
ostegories of softvare development. These categories are: 
1) requirements, design and oonstruction support. 2) verification 
and valldatlon support (1.e. quality evaluation), 3) software 
nanageaent support. The integratlon of the tools set is being 
performed through ooncept prototyping and development of tools 
speoifloally de61gOed to support the life opole snb provida 
transition fro* one phase to the next. 

Tools that integrate category ! to016 a m :  1) tohe Documentation 
Utility Lsokage - supports the development of software 
development library products that meet DoD-STD-8167; 2) the 
Software Development File Hanqt: - supports tho traoking and 
reportiag of inoremental devalopueat of the software development 
library yraduots; 
supports the automatlo exlraction af originating requirements and 
traoeabillty of propagated products through a relational data 
base. 

3) the Life -Ole TraOeability Hatrix Manager - 



'E0018 that intogrrto ortogorp 3 toolr m e :  
TrUrlatObr - supports tho rtstlc snalyrir o f  roftwsr. 
dev8lopaent library produotr; 
Reporti* (Yhite/Blaok) - rupportt the autoostio t e a t i w  of 
aoitvar8 oomponent'r logic (whit. box) Mb CSCI requirements 
verlfloatioa/validation (blaok b o w ) .  

i) r w u a t i o n  

a)  Autoratio Softvare Teating and 

Tool8 that integrate aategory S tool8 are: 
Xanapareat Utility - rupportr the control of baaaltned produoto 
and devolopaent oonf iguratlon i temr : 
Change Control Wansgement Syrtem 
reporting of change. to oonfiguration items f r o m  ohango inoeption 
through releare of produot; 3) the I n f o r u t t o n  Hanagereat System - rupportr user idantiflaation and aoquioitioa of reference 
aaterial and reusable software oomponeots r a d  their 
doourentatioo: 4) the  ProJeot PerforMnae Measurement System - 
supports matrix management based on the earned value technique of 
rchedule/oost traoking asad reporting. 

Phsro three of the plan is briefly disoussed and i t  applies  
advanoe teohnology t o  softvare development through the 
appl ioat ion of A I  expert system conoeptr. 

1) the SOftVare 

8 )  the Integrated Software - supportr tho tracking and 
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PROCEDURES AND TOOLS FOR BUILDING LARGE Ada SYSTEMS 

Ben Hyde 
Intermetrics Inc. 

Cambridge, Massachusetts 

This paper address some of the problems unique to building a very 
large Ada system. We do this through some examples taken from our 
own experiences. In the winter of 1985-86 Intermetrics 
bootstapped the Ada compiler we have been building over the last 
few years. This systems consists of about one half million lines 
of full Ada. 

Over the last few years we have adopted a number of procedure and 
tools for managing the life cycle of each of the many parts of an 
Ada system. Many of these procedures are well known to most 
system builders: release management, QA testing, source file 
revision control, etc. Others are unique to working in an Ada 
language environment; i.e. recompilation mangement, Ada program 
library management, Ada program library management, and managing 
multiple implementations. 

First we look at how a large Ada system is broken down into 
pieces. The Ada definition leaves unspecified a number of issues 
that the system builder must address: versions, subsystems, 
multiple implementations, synchronization of branched devel -ent 
paths, etc. 

Having introduced how our Ada systems are decomposed, we then 
look, via a series of examples, at how the life cycles of those 
parts is managed. We lood at the procedures and tools we use to 
manage the evolution of the system. It is our hope that other A d a  
ststem's builders can build upon our experiences of the last few 
years. 
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Rational's Experience Uiing Ada1 for Very Large &item 

Jarhes E. k c h e r ,  Sr. 
MicKae! T. Devkin 

1. Introdoctton 

creativity. !t has been described w one of the most complex activities undertaken by 
Man. The  risks dsociated with such an effort are increased by its size and by the 
involvement of participants from different organizations, locations, and, possibly, 
countries. By any measure, the software for Space Station ranks among the most 
ambitious projects ever undertaken. 
Considerable research effort has been devoted to solving the problems involved in the 
constructioq of such large systems. Unfortunately, while puch  of the resulting 
technology 19 available in the literature, it b not widely used [lS]. Reducing theory to 
practice is always difficult; the rate a t  which this has been accomplished for software 
seems particularly discouraging. These difficulties prompted the Department of Defense 
to start the STARS rogram 171 and to establish the Software Engineering Institute 131 to 

. The develo ment of very large software system challenges human intellect and 

focus on improving t g e state of practice. 

2. Mothation 

In 1981, Rational2 set out to produce an interactive environment that would improve 
productivity for the development of large software systems. The mission was to create 
an environment that supported high-level language development of systems developed 
using modern software engineering principles. This mission wm built on the belief in 
recent advances in programming languages, methods, and environments. 
In designing the Rational objecboriented design [4], abstraction IS], 
information hiding ( 5 ,  and were important both in terms of use in our 

rototyping Ill] was of particular importance design and as metho d s to 
because it gave a c c w  to the advantages of the environment and its component 
technologies, at  the earliest possible time. 
The language to be sutported was Ada. This was an easy choice. Ada appeared to be 
the latest and best enpee red  language for budding large systems [l]. In particular, the 
separation of specification from bodies appeared to offer a real advantage: it allowed the 
language to be used during design, as well as implementation, and it supported a realistic 
opportunity for reusability (81. 

Experience with research programming environments had shown that access to a set of 
integrated facilities could greatly leverage the ability of individuals to produce systems. 
The most widely used of these environments EU ported interpretive or dynamically typed 
languages, most notably Lisp [i3]. Researct efforts to support more appropriate, 
strongly typed languages were interesting, but they centered mostly on interpretive 
implementations for student subsets [2, 141. Even so, the benefits of these system 

-~ 

'Ada is a registered trademark of the U.S. Government Ada Joint Program Oflice. 

'Rational and Rational Environment are trademarks of Rational. 
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suggeated the feasibility of building a compilation-brsed environment for team 
development of large systems. 
From the outset, it WM clear that the Environment itself waa an example of the kind of 
system whose development it wm intended to facilitate. Although it would not be 
possible to use the Environment early in ita construction, the other central techno10 
themes,. language md methods, were still available. To support these before t e 
environment was functional, a ret of tools wm constructed to rupport Ada development 
in a conventional, batchsriented manner, We don’t think of the resulting tool set as an 
@environment@* however, it  doea constitute an APSE in the Stoneman sense 121, it 

compilation system. The development of t E b tool ret involved more than 300,OOO lines 
of Ada code; building it helped to improve our understanding of the problems and 
opportunities associated with the evolution of the Rational Environment. 

B 

includes a validated compiler, urd it b com arable to other commercially availab I e Ada 

8.  Earhnment Churckrfstfu 

The Rational Environment is the operating software for the Rational R1000, a t ime  
shared computer im lementing a proprietary, Ada-oriented architecture. It is written 
entirely in Ada, wit E considerably less than 1% of its statements being machine code 
insertions. 
The Environment fs the system interface; all users of the system use the same facilities. 
Although general-purpose computing is well supported, the system is designed to be used 
by projectrelated personnel with some interest in and facility with Ada and 
programming language concepts. 

1.1. Ada Framework 

The Environment directory rtructure is hierarchically organized. Names in this 
structure are Ada simple identifiers separated by periods, bs with Ada qualified names. 
This rtructure contains a variety of objects of a variety of system and user-defied types. 
One common object type is Iile; another is Ado. Files resemble files on any other 
system. Ada objects are more interesting. 
An Ada unit under development is an Ada object. The name of the object is the name 
of the unit that  it represents. Ada objects corresponding to library units have two parts: 
visible part and body. Separate subunits or Ada units are children of their parent Ada 
unit and are named tu such. As a result, the same name is used to refer to the unit 
when it is edited, compiled, and executed. All of the units residing in the same directory 
substructure constitute an Ada Library, and there are provisions for creating libraries, 
hierarchical or otherwise, from multiple simple libraries. 
The treatment of Ada units as typed objects is central to the design of the Rational 
Environment. In addition to supporting an objectoriented view of the unit throu hout 
the compilation process, the storage of the program object as an attributed D h A  
tree [SI provides access to the program structure in a way that makes a variety of 
interesting facilities available. These include Ada-specific editing operations, incremental 
cornpilation, compilation ordering and interconnection facilities, and direct execution of 
Ada statements. 
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8.a. Compflatfon 

The  traditional compilation model involves reading fides of program source into a series 
of tools that produce various processed f o r m  of the original program. During this 
process, new objects with new names are created and the user is forced to track the 
correspondence between the current program text and the current executable version. In 
contrast, the Environment cornpilation model centem on Ada units m definable objects 
that  are transforme by editing and compilation between three principal states: source, installed, and coded. 4 
A source unit has been parsed, but has yet to be compiled. It isn’t just another form of 
Tie: it’s a DIANA tree sufficient to support interactive syntax checking and to perform 
operations that depend on the structure of the unit. Maintaining this structure makes it 
convenient to keep units syntactically consistent at all times, Featly reducing the time 
lost trying to compile units with syntax errors. Ada was expkcitly designed to have a 
declarative structure that facilitates the expression of complex system interaction- in a 
way that can be statically checked. Installed units have passed the semantic checks 
necessary to assure that they are consistent, both internally and with units that they 
reference. Getting units semantically consistent and keeping them consistent is one of 
the major programming activities in Ada development. Once a unit is installed, coding 
is just a matter of time and computation required to get into execution; there is DO 
intellectual effort involved.. Coded units are ready for execution. Programs are intended 
to be executed, so this is the final state in the com ilation process, if not the most 
interesting one. 
compilation effort, increasing interactivity during one of the challenging parts of the 
programming process. 

The existence of separate installe r f  and coded states reduces the 

The Environment supports a spectrum of compilation paradigms: 

0 Batch installation and coding with fully automatic ordering 
0 Editor-based installation and coding of individual units 
0 Incremental, statement/declaration-level changes to installed units 

All these paradigms make use of the system’s knowledge of the structure of the units 
being processed to determine correctness and compilation ordering, Incremental changes 
to compiled units has an immediate intuitive appeal regardless of the language involved. 
Making small changes and only recompiling what hss actually changed reduces both the 
total compilation effort and the time between a change and getting the benefit from that 
change. This is particularly important for Ada: getting immediate feedback on the 
legality of a change makes it possible for the developer to use the declarative structure 
more effectively in evolving the program. Early detection of problems minimizes wasted 
effort. 
Another benefit to be derived from incremental operations is the ability to add new 
functionality to a specification with minimal compilation effort. The goal is to add 
declarations to the visible part of a package without allowing illegal changes or requiring 
clients of the package to be recompiled - all of the benefits of strong typing without the 
consequences. Providing this facility was one of the more interesting technical challenges 
in building the Environment 1151, but it was certainly worth the effort. 
Immediate semantic information about programs under development is not limited to the 
compilation process. Part  of providing incremental semantics was building a database of 

3Cornpilatioa for targets otbcr tbaa tbc RlOOO may involve more than tbeec thrw states. 
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declaration-level dependency information sufficient, in conjunction with the DIANA 
trees, to determine the legality and impact of incremental changes. This information 
turm out to be enerally useful. For installed Ada units, the relationships between 

naming (use clauses, renaming declarations, overloading), it isn't possible, much less 
desirable, to keep track of these relationships on the basis of the program text. Using 
the compilation dependmcy information, these relationships can be checked 
interactively. 
Dciinifion is the name of an operation to show the declarations of an object that is 
referencedpmewhere in an Ada unit. As typically used, the user points to the reference 
of interest and presses the key to provide its definition. The declaration of the object 
referenced is brought onto the screen in the context of its Ada unit. It is also possible to 
r i d  the implementation of the declaration. Definition is very useful in refreshing 
familiar code in the user's mind; it is invaluable in understanding unfamiliar code. A 
generalization of this mechanism to all system objects is the basic command for visiting 
objects of any type, traversing the directory structure, and changing context. 
Show Ueuge is the name of the operation that goes in the opposite direction: it provides 
the s e t o f  references shared by a declaration, a form of interactive cross-reference. If 
only one unit references the declaration, the referencing unit is brought onto the screen 
with each of the references underlined in a way that it is easy to traverse from one 
marked reference to the next. Where multiple units reference the declaration, a menu of 
units is present and the definition operation applied to any of the menu entries brings up 
a marked image of the indicated unit. Show Usage runs in time proportional to the 
number of firstlevel references, typically a second or two. It is an invaluable aid in 
determining the impact of an anticipated change. 

S.S. Ada Command Language 

Conventional systems typically provide some sort of command shell that executes 
progruma, specially prepared and loaded collections of units that can be executed from 
the command shell. These procedures must either live in a simplified world without 
parameter passing or understand l o w  to read arguments from the command line. Then, 
if a normal procedure wants to call one of these programs, it is necessary to understand 
how to invoke a shell and construct the parameters as if they were being p w e d  in from 
the shell. 
In the Rational Environment, any coded visible subprogram can be executed simply by 
calling it, provided that the closure of uni ts  required by Ada rules is also coded. This 
hea a profound effect on the accessibility of code for execution and testing. By unifying 
the shell program interface to use the normal Ada parameter mechanisms, the interface 
is made 6 0 t h  simpler and more powerful. 
One salient improvement is the ability to use the richness of Ada semantics. This ability 
to reference the declarations in Ada units isn't limited to procedures and functions; it 
extends to all Ada declarations: types, objects, constants, generics. The advantages that 
Ada h a s  for the expression of application designs are available for the specification of the 
system interface or user-written utilities. This generality has far-reaching implications 
on the appearance, usage, and implementation of the system. References to procedures 
with complicated parameter profiles can be expressed using the name notation, 
parameter defaulting, and overloading. Interfaces to predefined packages, e.g., 

a 
declarations and t % eir uses is a matter of great interest. Given the rich structure of Ada 

0 

'It in ab0 possible to type its name if tbere is no immediate occurrence to point to. 0 
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Text IO, are just easily invoked as commands to create files, using the same 
interfice. 
The  full ower of Ada is important to making the command interface work. An Ada- 
like inter P ace that is limited to normal command-style entries might seem an attractive 
tradeoff between generality and implementation effort, but closer inspection reveals the 
limitations of this strategy. Cutting isolated features from any language is a treacherous 
undertaking. abstract 

turns out to be quite useful. This usefulness, in turn, depends on the ability to rovide 

The command interface is an Ada declare block into which the user typically enters a 
single procedure call that is executed. In the eneral case, it is possible to write complete 

is then com iled, and code is generated and executed. The completeness of the facility 

interface L Ada, it is strongly typed; it benefits from detection of errors during 
compilation rather than during execution; syntactic and semantic completion are 
provided. 

As a simple example, private types are useful for providin 
interfaces to system functionality, and having private types in the comman 8; interface 

function results as parameters and, in many cases, to make them default reasonab P y. 

Ada programs using tasks, generics, or any ot gh er Adafonstruct in this block. The block 

is often exp P oited in learning Ada and determining .what would happen if ..:. Since the 

S.4. Editor-Based User Interface 

All interactions with the Rational Environment are through a general, object-oriented, 
multi-window editor. At one level, the editor provides familiar .what you see is what  
you get. on the images corresponding to the objects being edited or viewed. The text of 
the images can be modified directly using character, word, and line operations; portions 
of images can be copied or moved to other locations in the same or dilferent images; 
there is a general search/replace interface. All of these capabilities allow the user to 
view and modify objects in a human-readable form: text. 
Many of the various types of objects in tbe system, most notably Ada, are stored in more 
interesting data structures than text. To support the transition from text editing to 
object representation, the editor supports an incremental change, parse, pretty pr in t  
cycle. Changes to the text are saved for processing by typespecific editors that 
understand the syntax of the particular object. The changes are processed by the 
incremental parser to create consistent object structures. As necessary, the revised data 
structures are reflected onto the image with any corrections or embellishments that are 
deemed appropriate by the editor for the type. A typespecific editor, called an object 
editor,  is available for each of the main object types. AU of these implement similar 
editing cycles, but the operations, grammar, and semantics for Ada, discussed below, are 
the most interesting. 
The actual operations provided for editing an object are logically separated into three 
classes: image operations, common object operations, and typespecific operations. Image 
operations are the outer-level, character-oriented operations; these are the same for all 
object types. Common operations are those that are expected to be available for all 
object types, but depend on the  characteristics of the type; these include edit, structural 
selection, detail control, and various state transformations. Typespecific operations are 
provided by some types of objects where the characteristics of the type require additional 
functionality. Creating an object is typespecific. 

0 

5Tbere is a special fast patb provided for a common subset of known procedures for which no code L 
generated. Thin covers about 80% of the command executions. Users are typically unaware of which 
path a particular command takes. 
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A simple, but commonly used, object editor is the one provided for the subclass of files 
corresponding to text. Its use with Ties, whether created by the editor or written by 
programs with Text IO, is fairly conventional but benefits from tbe ability to select 
text from other objec't types for inclusion in documents, mail, or bu reports. The text 

for interactively executed programs. In this mode, the userhss full access to the7eatures 
of the editor in providing input to programs and scanning their output, either while they 
are running or long after they have completed. 

One of the features of the editor interface is that it doesn't impose any particular 
interaction sequence on its users. As a result, it is possible to  freely switch between 
objects being edited and executing programs. The input required by an executing 
pro am can be provided by copying the text from another object or from a previous r u n  

kept current with the values of the underlying objects, including (optionally) scrolling 
windows into which program output is being generated. This makes it convenient, for 
instance, to maintain a window on a long-running command to monitor its progress while 
continuing to get work done on something else. 

3.6. Ada EdStSng 

Ada wm designed to allow the specification and construction of complex systems that 
could be read, understood, and maintained. A person has  to write the programs, 
preferably using the expressive capabilities that will serve well throughout the life of the 
code. The purpose of the Ada object editor is to make the writing m easy as possible. 
By understanding the syntax of Ada, the editor is able to provide interactive syntax 
checking and completion. Syntactic completion is based on the notion that many tokens 
in the syntax are redundant; providing the additional tokens is only marginally harder 
than detecting their absence. For instance, most of the structures of Ada syntax are 
signaled by keywords or punctuation that bracket constructs; e.g., the existence of the  
keyword i /  implies the futurc cxistcnce of end i /  and at  least one statement in between. 
The editor uses this information to provide the keyword structure and, if required, 
prompts for the expression and statement portions of the statement. The result is 
logically very similar to operations provided by syntax-directed editors, but is 
stylistically similar to normal text editing and only enforces syntactic correctness at user- 
specified points in the editing process. Used frequently, the program can be kept 
syntactically correct; when necessary, wholesale editing can take place without incurring 
checking overhead until the changes are believed to be complete. Prompts are presented 
in a special font and obligingly disappear when typed over, providing convenient 
reminders of code still to be written. Any attempt to execute a prompt raises an 
exception. 
A less frequently used, but powerful form of syntactic completion is prjvided to 
construct skeletal bodies for the  visible operations of a unit. Completion saves typing 
the same procedure headers in both the visible part and the body. A related operation 
creates a private part with prompted completions for each of the private types in the 
package. 
The logical extension of syntactic completion is  ema an lie complefion. Semantic 
completion fills out the contents of expressions, most commonly subprogram calls or 
aggregates, in a manner analogous to the way syntactic completion fills in the structural 
parts of the language. When making an incremental change in an installed or coded 
unit, it is possible to enter part of an expression, typically a procedure or function call, 
and request that the system fil l  in the parameter profile with prompts for parameters 

object editor is also responsible for dealing with Standard Input au ! Standard Output 

of t r e same program. To support multiple concurrent activities, all visible windows are 
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without defaults. In doing so, the system will provide the full name-notation 
presentation of the call, supporting goad stylistic use of the language without requiring 
the user to do the additional typing. 

SA.  Debugging 
The Rational Environment sup rta debugging in the same spirit as the other parts of 
the programming recess. DeEgging a program is just like running it without the 
debugger, except t E at a different -executem key is used. No special preparations are 
required to set programs up to be debugged. Debugging is not intrusive: two people can 
be debugging the same program at the same t h e  without getting in each other s way. 
Interaction with the debugger is at the source level. Program locations are displayed by 
bringing up the Ada image of the statement and highlighting it. Variables and 
parameters can be displayed by selecting them and pressing the -Put. key or by 
entering a command with the name of the desired variable. The value displayed is 
presented as it would appear in program source: record values are printed as aggregates 
with field names; enumeration values are printed as the appropriate enumeration literal. 

3.7. HostTarget Support 

Although the RlOOO provides an attractive environment for the execution of Ada 
programs, the system was designed to support the develo ment of programs that would 
run on other targets, not to be a target itself. With t i e exception of the execution 
interface, the system provides all of the facilities described for target development. 
Editing and compilation appear the same for .other targets as for the R1000. Indeed, the 
target being compiled for is a declarative property of the library and affects the content, 
but not the form, of the basic operations. Since we don’t expect that Rational will 
supply code generators for every possible target, there is a general compilation interface 
that captures target dependencies in installation and coding, without user intervention. 
Execution and debugging are less easily specified, but the debugger architecture includes 
support for the same set of operations on targets connected by communication lines a9 
for native RlOOO programs. There is also provision for targetspecific debugging 
operations in a manner analogous to that used by the editor to provide typespecific 
operations. A variant of this hosttarget strategy was used successfully in debugging the 
Environment in its early stages. 

8.8. Confignratlon Management m d  Version Control 

Supporting an objectoriented view of Ada units implies support for configuration 
management and version control within the same integrated context. Previous 
experience with research environments suggested that programs need not be files, but all 
of these efforts focused on lone developers on rototype systems, not teams producing a 

version control from compilation; this separation is impractical without compromising 
compilation, completion, and other facilities. 
A separate, but related, problem that arises in a large system is control over the 
configuration to be compiled and executed. Early experience showed that the 
connectivity of a large Ada system the environment itself) makes it attractive to break 

before being used by another. Simply executed, this strategy provides some relief, but it 
still strains compilation resources at  integration points. This strain was especially 
bothersome, since integration took place during a prototyping stage when long delays in 
re in t egr a t ion were u n d esi r a b 1 e. 

product. Conventional systems solve the pro Fl lem by separating program storage and 

the system up into subsystems to alow I changes in one part of the system to be tested 
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The wlution to this configuration problem was to structure subsystems to have the 
uivalent of visible parts and bodies. Subsystem interfaces, a subset of the vlsible units 1 the subsystem, provide the correspondent of visible parts. The complete set of units 

corresponds to the body of the subsystem. As with Ada units, the contract made by the 
visible art must be fulfilled by the body, but the implementation of the body can be 

of incremental change of visible parts within a subs stern is that of upwardzompalible 
changer. Upward-compatible changes are additiona r declarations that can be added to 
the rubsystem interfaces such that references corn iled against a version of the interface 
without the new declarations will continue to wor!, but new code can start to reference 
them. 
One very effective additio to the subsystem technology wm the ability to hide the 
private parts of packages? Private parts are instrumental in providing abstract 
utterfaces whose underlying implementation can be changed without rewriting 
referencing code. This extension makes it possible to change the representation without 
recompiling, just 89 if the completion of the type were in the body. For our code, this 
capability was particularly useful. It is common to have a package that exports private 
types whose completions are types exported from instantiation(s) of generics that are 
only referenced for this purpose. Closing the private part makes it unnecessary for the  
interface to appear to wa'fh the package exporting either the generics or the types 
involved. Reducing the wifh closure reduces the size of the interface while reinforcing 
the spirit of abstract interfaces. 
This ability to compose a system of compatible subsystem that have not been directly 
compiled together greatly facilitates integration, especially since the wurance  of 
semantic integrity is not lost. It does not directly address the version control problem, 
but leads to a version control policy based on a series of viewe - configurations of the 
entire subsystem library, each spawned from the previous version of the view. 
Experience with these mechanisms and experience with the compilation system have lcd 
to the construction of a more sophisticated form of view that combines the advantages of 
subsystems, reservation-model .source. management, and differential storage of changes 
to provide a facility that effectively combines the best of conventional version control 
with the advantages of subsystems for forming configurations. By managing views for 
the user, it is possible to provide support for these various forms of multiplicity in such a 
way that there seems to be more than one version only when differentibting 
configurations is part of the work at hand. 

8.9. Llfo-Cycle Support and Extensibility 

The goal of the Rational Environment is to support all of the life-cycle activities 
involved in software development. The initial implementation effort has !mused on 
support for detailed design through maintenance and on building an environment that is 
conducive to extending these facilities into other parts of the lire cycle. Our experience 
h a s  been that Ada, by itself, provides a useful basis for program design, especially where 
it is possible to compile the designs and trace through the dependencies. 
Many of the facilities that make the Environment attractive for programming also make 
it attractive for tool development and use. The access tc DLANA and semantic 
information holds out the promise of building toob to analyze program and and their 
deveJopment. The ability to construqt interactive, editor-based interfaces has proved 

change B without recompilation of clients of the visible part. An extension to the notion 

~ ~~~ 

GThc RlOOO architeclurc provides efficient aupport for tbia form of truly private type. 
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attractive and has helped in the process of providing useful interfaces for interesting 
funetionolity. 

4. Experience 
The Rational Environment itself consists of about 800,OOO linea of Ada. Development of 
the Environment also required building about 700,OoO linea of Ada to rovide cross- 

(simulators, translators, analysis programs). The product was first shipped to customers 

performance, increased functionality, and improved robustness) have been delivered since 
then. 
This development has provided considerable experience in the use of Ada with modern 
software engineering practices. This experience can be summarized by the following 
statements: 

development tools (compilers, debuggem) and hardware/microccde rleve P opmen t tools 

0 ID February of 1985. Several significant upgrades (involving greatly improved 

1. Adoption of Ada and the software engineering practices referenced earlier has 
been somewhat more difficult than anticipated. Significant investment in 
tools, training, and experience has been required. 

2. The benefits are very real. Improvements in productivity and quality have 
been evident in all phases of development: design, implementation, 
integration, test, and maintenance. 

4.1. Early Ada Experlence 

In 1981 and early 1982, a series of programs were constructed: development and 
simulation tools and prototypes of high-risk components of the Environment. These 
typically consisted of 50.100K lines of Ada. 
Ada proved to be an excellent language for applying the concepts of information hiding, 
data abstraction, and hierarchical decomposition based on levels of abstraction. The 
basic package mechanism, separation of specification and implementation, and private 
types allowed rapid construction and modification of large, modular programs. 

Ada cannot force good design, but it does capture and clarify the decomposition and 
connectivity of programs, allowing early detection and correction of architectural flaws 
in the design. Ada became our primary design tool, particularly for detail design. With 
experience, we were able to produce high-quality designs quite rapidly. 
The interaction between sernah tic checking and modularity produced significant 
improvements in productivity. Using modularity and type structure to capture design 
information increased somewhat the time required to first execute the program, but it 
also greatly increased the chances that the f i t  execution would be productive. New 
arrivals frequently complain that they aren't ever going to get the program to compile, 
only to come back later amazed that it worked the f i t  time. When problem did arise 
at  runtime, constraint checking allowed the errors to be detected early in execution. A 
common, effective debugging strategy is to run the program until an unexpected 
exception occurs; the problem is often evident with no additional information. Even 
when this is not the cme, the modularity of most programs reduces uncertainty about 
interactions and allows much more rapid isolation of errors. It is also much easier to 
reason about the structure of program and predict the consequences of a change. 
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Early experience also showed that all these wonderful benefits were not free. Ada 
semantic analysb is very expensive, increasing compilation timea significantly relative to 
other languages. The  early detection of interface and typesafety errors was 
handicap ed by the use of batch compilation technology to report these errors. This 
confirme B our belief that an interactive environment for Ada with support for 
incremental compilation would greatly improve productivity. 

4.B. LUgbSC818 Development and Integration 

In 1983 and 1984, the development focus at Rational shifted from developing program 
consisting 9f 10-100 packages to incrementally constructing and integrating a complete 
system made up of 30-40 subsystems, where each subsystem wm the size of one of the 
earlier programs. 
The system was decomposed hierarchically into five major layers, with each layer 
consisting of 5-8 subsystems. Although there were significant structural and interface 
changes over the life of the project, the basic architecture w a  surprisingly stable. This 
architecture allowed considerable parallelism in the overall development process and was 
instrumental in the evolution of our understanding of the configuration management and 
version control issues in developing large Ada system. 
At a very early point, the components of the system (or skeletons of the components 
were integrated into a complete system. 
functionality, but allowed the basic architecture to be .debugged. before the entire 
system was constructed. This integration allowed system design issues such m storage 
management, concurrency, and error handling to be add:essed very early in the 
development process. Early integration also served to stabilize major interfaces. 
Development of the individual subsystems proceeded in parallel, with periodic 
integration to provide a new baseline for further development. The use of hierarchical 
decomposition allowed enough independence for development to proceed in parallel, 
while providing tight interface control to minimize integration problem. It was this 
integration process that led to the evolution of the subsystem concepts and supporting 
tools described in section 3.8. 

The combination of the Ada language with objectoriented design techniques, tool 
support for integrating configuration management and compilation management, and an 
incremental integration strategy proved very effective for this particular project. 

4.8. Maintenance 

The Rational Environment has been in field use for about 16 months in multiple releases. 
Supporting it has provided some limited insight into the maintenance phase of a large 
Ada system. At Rational, maintenance is the responsibility of the original development 
team; it was crucial that new development proceed in parallel with maintenance without 
significant increase in development staffing. 

Our ex erience has indicated that Ada's greatest value may be in maintenance. In this 
particu P ar case, rnainfenance included bug fixes and minor enhancements, addition of 
major new functionality, redesign and reimplementation of several subsystems to 
improve performance, and reorganization of parts of the user interface. Since initial 
product introduction, not only has it been possible to provide desired new functionality, 
but reliability and robustness have improved and overall system performance has  been 
increased by at  least a factor of 3. 

Efforts to improve performance are interesting examples of both the power and the 

e 

This initial system had very limite d 

0 
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associated dangers of modularity and abstraction. up a large system in 

(Ada generics). There were several cases where performancecritical sections of w d e  
were operating through generics in multiple layers of the E stem, where a much farter 

completely redone and integrated into the system without major disruption, Abstraction 
is not an end in itself, but used carefully, it  can help produce reliable, maintainable 
software to meet performance constraints. 

4.4. Experience Udng the Rational Environment 

Bringin 
minimum time wbs greatly facilitated by abstract interfaces an B the ability to reuse code 

implementation was possible. Ironical1 , the same modu T arity and abstraction that 
introduced the problems contributed to t II e solution of the problems: these sections were 

t 

. 
Our experience using the Rational Environment has confvmed those advantages we 
foresaw when we started the project. Interactive syntactic and semantic information 
makes a tremendous difference in the ease of constructing program and making changes 
to them. The  ability to follow semantic references makes it easier to understand existing 
programs and the impact of changes. The integrated debukger makes it much easier to 
find bugs and test l i e s  quickly. Taken together, these facdities have helped greatly in 
reducing the impact of ongoing maintenance on our ability to produce new code. We 
anticipate similar improvements as we achieve the same level of integration and 
interactivity for configuration management and version control. 
The Environment has also proved useful in introducing new ersonnel to the project and 
existing personnel to new parts of the system. New ersonne v benefit from the assistance 

the structure of unfamiliar software. It is often possible for someone completely 
unfamiliar with a body of code to use these facilities to understand it well enough to 
successfully diagnose and Ti bugs in a matter of minutes. 

with syntax and semantics; everyone benefits from t i e ability to traverse and understand 

0 
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Alsyrr has implemented validated Ada compilers that are hosted and 
targeted on a variety of microprocessor-based workstations, including 
the IBM PC/AT ( * ) .  The availability of Ada compilers for these kinds 
Of inexpensive, widely available machines considerably enhances the 
development options for large efforts such as the NASA Space Station, 
and we address this from both an implementation and a user 
perspective. First we discuss the issue of large program development 
on a workstation: how the compiler must handle this, and how an 
inherently decentralized approach can be managed. Next, we focus on 
code efficiency and describe the compiler and run-time design 
decisions that help meet this goal. We conclude with a presentation 
of benchmarks that are quite encouraging with respect to the run-time 
efficiency of Ada code compared with other languages. 

, Developing Large Programs 

One of the principal design goals of Alsys’ compilers is the 
ability to handle large programs. The technical approach combines a 
host interface package that inplements a virtual memory mechanism for 
compile-time data, a dynamic loader (for the 68000-based systems), and 
a user option for protected mode that allows programs as large as the 
f u l l  m e m o r y  capacity of the workstation ( for the 80286-based systems). 

As users of our own tools, we have 88bootstrappedn the compiler 
and its supporting environment, comprising over 300,000 lines of Ada, 
on ‘he PC/AT. Getting the compiler to compile itself has given us 
considerable experience as users of the PC/AT compiler for a large 
software project. Our development system was originally hosted on 2 
Vax minicomputers, but we switched to AT’S as soon as the compiler was 
sufficiently robust. Our project is now being completed on a network 
of 2 Vaxes and about 10 ATs, (each engineer has an AT on his desk) 
tied together with an Ethernet. 

Our experiences as t8pioneer userst8 of the PC/AT compiler in a 
networked workstation environment are encouraging. The main problem 
in such an environment is keeping versions of source code and object 
programs organized, and we will discuss in the full paper the 
solutions that we have developed. The main advantage has been an 
increase in productivity. The subjective perception among the 
engineers who have switched from a time-sharing to a personal 0 icomputing environment has been overwhelmingly positive. 

8.2.6.1 



Page 2 

Run-Time Efficiency 

A critical compiler objective is the attainment of high quality 
code. To achieve this, the compiler design includes two intermediate 
languages -- one at a high level comparable to DIANA, and the other at 
a low level -- and two optimization passes. Additionally, the code 
generator performs machine-specific optimizations and the run time 
design emphasizes efficiency of subprogram linkages and object 
references. 

A set of benchmarks, originally coded in Pascal by an independent 
organization, were rewritten in C and Ada and run on a variety of 
commmercially available compilers on 68000-based workstations and also 
on the IBM PC/AT. The conclusion from these tests is that it is 
possible to get efficiency with Alsys' Ada compilers at least as good 
as from compilers for c and Pascal. (A more complete description of 
the benchmark tests will be given in the full paper.) 

Conclusions 

The trend in hardware is toward decentralization, with an 
increase in cheap computing power and low cost memory. The problem 
has been a scarcity of software tools to take advantage of this 
increased power and capacity. With the emergence of Ada compilers in 
the workstation environment, such as Alsys' for the PC/AT, and 
advances in techniques for managing and integrating separately 
developed components, there is an opportunity to have the best of both 
worlds: the benefits of Ada, and low-cost software and hardware 
development environments. 

I 

(R) Ada is a registered trademark of the U.S. Government (Ada Joint 
Program Office) 

( * )  Note: The PC/AT compiler has been internally prevalidated; it 
w i l l  be formally validated by the time of the conference. 
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Ab et rac t -- 
Despite considerable commercial 
exploitation of 'fault tolernnt' systems, 
significant and difficult research problems 
remain in such areas as fault detection and 
correction. Thie paper describes a 
research project to construct a distributed 
computing test bed for loosely coupled 
computers. The project is constructing a 
tool kit to support research into 
distributed control algorithms, including a 
distributed Ma compiler, distributed 
debugger, test harnesses, and environment 
monitors. The M a  compiler is being 
written in Ma and will implement 
distributed computing at the subsystem 
level. The design goal is to provide a 
variety of control mechanisms for 
distributed programming while retaining 
total transparency at the code level. 

Introduction 

Many new system designs specify a distributed architecture to 
attain incremental growth or increased computational power. 
These systems typically have homogeneous processors linked 
either by shared memory or by a message passing system. 
Concomitant with easy expandability and large computational 
power, one gains some resiliance against hardware faults. That 
is, if one processor fails, only the work executing on that 
processor is lost, not the entire work load. If one adds the 
capability to detect processor failure and to move the work 
from that failed processor to other working processors, then 
some tolerance for both hardware and software faults is 
attained that cannot be achieved with single processor systems. 

* Ada is a registered trademark of the Department of Defense, 
Ada Joint Program Office. 
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Further, if one can move work from a failed processor to an 
active processor, rather easy extensions allow work to move 
from one active processor to another, achieving a load 
balancing effect for maximum output from the processor 
resource. 

This ability to function despite hardware failure has made 
distributed, loosely coupled architectures a favored 
architecture for ultra reliable systems. To make this 
architecture effective, we must partition a problem into 
several parts so that each part can execute relatively 
independently on separate computers. The partitioning process 
introduces requirements to coordinate the execution of the 
several parts and to verify that each part is operating 
properly so that, if a failure occurs, corrective action can be 
taken. Such methods for problem coordination and control in a 
distributed environment are the principal focus of this 
research. We wish to assess whether, given the proper tools, 
one can construct loosely coupled, distributed applications 
that are cost effective, reliable, and efficient. 

When a problem solution is developed for execution on a single 
processor computer, the usual method is to design several 
modules that jointly solve the problem. Coordination of the 
solution process requires a communication channel between 0 modules, usually via shared variables or messages. Further, 
any shared data must be specified and storage allocated. This 
design results in intimate coupling between the several 
modules, with a significant chance for error. Ada provides 
extensive checking of the interfaces between modules and the 
operations allowed on each data element, greatly reducing the 
severity of module interface errors. 

When a problem is partitioned for execution on a distributed 
processing host, one designs several programs (instead of 
modules) that jointly solve the problem. Interface errors may 
still occur, but since a compiler can process only one program 
at a time, there is no compiler support for checking and 
controlling the inter-program interfaces. Hence one would like 
to extend the power of Ada to distributed programs. In such an 
extended language, a problem is still decomposed into 
separately executing programs (Ada tasks), but data sharing and 
module synchronization are implemented and checked by the 
compiler. While such an extension itself presents 
implementation difficulties, two additional problems are 
present in a loosely coupled environment: assuring liveness 
and serializability. Thus, we requf-re a test environment to 
evaluate candidate implementation methods and to develop 
efficient new algorithms. The Ada language was designed to 
provide support for a distributed programming paradigm. Its’ 
visibility and synchronization rules provide a model for data 
sharing, while the task and rendezvous constructs provide a 
control model. Ada provides primitive mechanisms for assuring 
liveness and serializability, but the attainment of these goals 
is left to the programmer. To assess the viability of Ada’s 
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model, we require two things: a distributed host with a 
validated M a  compiler, and a tool kit for developing, 
debugging and meaouring the performance of dietributed 
progrtrmo. However, becauee M a  provideo a model but not m 
implementation of distributed programming constructs, we must 
expect to try a variety of implementations before eettling on 
one with acceptable performance. Hence w e  require a compiler 
that we can modify to try various implementations of M a .  

1 These considerations have led to the establishment of a Fault 
Tolerant Computing project at Grumman Data Systems with the 
following goale: 

1. To construct am Ada compiler for a dietributed architecture 
host eo that the implementation of Ada’e model can be 
varied eignificantly. 

2. To implement several distributed programming models and 
assees their viability for eerious problem solving in 
realistic environments. 

3. To develop models and methode for solving the liveness and 
serializability probleme, and to teet these ideas on the 
dietributed programming environment provided by the first 
two goale. 

The project began in July of 1985 with a goal of constructing 
the foundation M a  compiler by e w e r  1988 and providing the 
first implementation of a distributed programming model by 
early 1987. The remainder of this paper describes the design 
and development of the foundation compiler and its supporting 
environment, and concludes with an outline of a distributed 
programming implementation for Ada. 

Hardware Technology 

The hardware base is the Eternity E-5000 computer system from 
Tolerant Systems, San Jose, CA. This syctem contains loosely 
coupled processors built with the National Semiconductor 32000 
seri.es VLSI processors. The operating system is TX, a superset 
of Unix BSD 4.2 and System V with extensions for transaction 
processing, distributed file systeme, and built- in fault 
detection and recovery. The hardware is targeted for the 
commercial on-line transaction processing market, and so 
features a particularly robust and flexible communications 
capability. The fault tolerant capability is achieved with 
fail fast processors, dual redundant communication paths, and 
fault detection and reconfiguration software. Further, 
operating system services themselves are distributed in such a 
way as to support proceso migration, either to avoid faults or 
to provide load balancing. This eupport for distributed 0 programming algorithms ie an important advantage; it minimizes 
the infrastructure we must build. 
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Each processing element is actually a tightly coupled met of 
32000 procomeor.. (See Fig. 1). One processor (WV) is 
dedicated to umer applications, one (WU) to the operating 
system, and one (CIP) to I/O m d  communications protocols. The mu provide8 a UNIX compatible executing environment, while the 

provideo a real-time environment, Both processors have a 
cormDon system lrnguage (C) m d  machine language. Although 
operating system oervices differ somewhat on each processor, 
one compiler can produce code that will execute on either 
procamor. This permits ue to develop an .Ida compiler that 
will produce code for both a time sharing aiid a real time 
environment. 

The file syetem is UNM compatible at its interface, but highly 
modified in its implementation to provide a global name space 
and a robust foundation for system operation. In addition to 
traditional services, the file system provides an efficient, 
guaranteed message delivery system and plexed files with 
automatic restoration after failure. Thie is an essential 
system service for effective implementation of Ada's 
distributed programming model. 

I 

E-6000 Configuration Example 
Figure 1 

Compiler Technology 

The M a  compiler must be constructed in such a way that the r u n  
time library can be modified. Since Ma'e model fo r  
distributed computing is centered on the task construct, the 
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e 
t inter-taak rendeavous taek schedt ing algorithms muet ale0 

bo modifiable. We have chosen the retargetable compiler 
technology from TeleSoft, San Diego CA as the baee on which to 
build. This system providee the syntactic and eemantic 
aaalysis for M a ,  manages am Ada library, and providee output 
in a tree etructured form at approximately aeeembly language 
level. Our task is to build a suitable code generator for the 
E-6000 hardware. A key feature ie that eufficient information 
on the Ada taek implementation is available eo that we can 
modify the Telesoft implementation model if required. 

\ 

One of our theme8 when implementing thie compiler ie program 
execution efficiency. Execution efficiency not only requires 
an efficient algorithm, one of the primary foci of this 
reeearch, but aleo an efficient implementation of those 
algorithme by the compiler. Thus code optimization becomee a 
theme of the first part of the project. Because of our 
implementation strategy, the potentially arduous construction 
of optimization algorithme splite naturally into three parts. 
We will depend on the TeleSoft front end for optimiaa.tion flow 
of control, common sub-expression elimination, etc. The output 
of the compiler is National Semiconductor assembly code for the 
32000 processor. The aeeembler on the E-5000 implements 
extensive optimizations that are effective for a C language 
compiler, euch as code hoisting and instruction selection. 
Thus our code generator will concentrate on optimizations such 
as register allocation, minimization of bounds checks, 
efficient exception propagation, and the like. 

Since the compiler will produce code for a real time 
environment, we must ensure that efficient programs are 
possible. Further, a highly modular language like Ada could 
invoke a large number of subroutine calls, making efficient 
call/return mechanisms a requirement. We focus on our 
implementation decisions surrounding the call/return mechanism 
as an example of tradeoffe involved during the compiler 
construction process. 

The call/return mechanism has several basic requirements. It 
must: 

1. Allow passing of data into and out of a subroutine. 

2. Allow saving and restoring of temporary registers. 

3. Allow access to out of scope variables. 

4. Allow exception propagation out of the local scope. 

5. 

The E-5000 uses a stack mechanism, growing down from high 
memory locations, for temporary variables including frame 
pointers. Thus the basic call/return paradigm is a classic 
one : 

Allow task switching and hence logical reentrancy. 
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Call: Put vrriablem on the stack 
Put return address on the stack 
Branch to the subroutine 

(in called routine) 
Save old stack baee and old frame pointer on etack 
Set n e w  etack base and new frame pointer 

Restore old etack baee and old frame pointer 
Branch back to return addreas on etack 

Return: 

(in calling routine) 
Remove return variables from stack 

To extend this model for Ada, we must decide how to allocate 
stack space considering the multi-tasking M a  model and how to 
propagate information to/from the called routine with a minimum 
of overhead. M a  requires extra information be passed across 
this interface to allow out of ecope variable references and to 
propagate exceptione. It was a particular goal to minimize the 
overhead of these latter requirements. 

For the etacks, we have adapted the results from [GUPT85], 
namely to use a static etorage area for module instances and a 
dynamic heap for temporary variables, satisfying requirements 

(This scheme is often called a Berry-heap after 
!6%%8]). When allocating etacke for independent tasks, one 
must account for the possibility of collision of these stacks 
with each other [YEH86]. There are only two solutions, impose 
a static limit on the size of the stacks, or dynamically create 
room when required. In either case, the stack-full detection 
mechanism provided by the hardware is no longer useful for 
multiple stacks. We must implement the checks efficiently in 
software . 

0 

We allocate an initial etack with the intent to dynamically 
allocate more stack space if and when required. This approach 
makes effective use of available memory even for very large 
numbers of tasks, and imposes very little overhead [YEH86] .  
However, we now muet check for stack overflow before every 
stack usage, an unacceptable overhead. Our first solution was 
to check, before every call, that parameters would fit on the 
stack, and then check at every entry that local variables (the 
frame) would fit un the stack. This is a two call overhead for 
every original call, an unacceptable result. The final design 
depends on the observation that stack requirements for local 
data and parameter passing are known at compile time, so that 
we can substitute one call on entry to each routine to check 
for sufficient stack space. Further, since routines that 
invoke no other routines typically have very small stack 
requirements, by requiring a emall buffer space be present on 
all stacks we can remove all stack checking overhead for such 
calls. We accepted such minimal overhead for the benefits of a 
highly dynamic stack allocation mechanism. 
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The remaining two requirements, to implement out of acope 
references rsd 60 permit exception propagation to cross the 
call/return interface, each require separate treatments. Out 
of scope references in a multi-task environment are often 
implemented by copying a 'dieplay' onto the currently active 
stack before every call. This display contains the storage 
offset pointer for each visible module, including the calling 
module. Each out of scope reference is implemented as an 
indirect reference relative to the proper pointer plus an 
offset. The difficulty with this eolution ie the requirement 
to set up the stack before each call. Although optimization 
algorithms could avoid setting up unnecessary displays, we 
would prefer to avoid the overhead altogether. 

t. 

Our solution requires a static display area, one per task. 
Each module has a statically determinable lexical level that 
serves as an index into this table. When calling any module, 
we save the current value in the table at our lexical level, 
and overwrite the proper frame pointer in the table. On return 
from the routine, we merely copy back the original contents of 
the display. This requires an overhead of one load and two 
stores per call, optimizable to no action at all if we can 
determine that the routine being called does not reference any 
variables at our lexical level or higher and calls no other 
routine. 

An efficient solution to exception propagation requirements is 0 more complex. For locally raieed exceptions, we can clearly 
use a direct transfer to the exception handling code. However, 
if an exception must be propagated to an outer scope, we must 
'unravel' the stack frames as we search for the handler. In 
addition, w e  require that the cause and location of the 
exception raising be determinable in case a handler is not 
found. For real time programming, we would like such a 
mechanism to be swift. Further, if the exception could not be 
handled at any level, for debugging purposes we should not 
unravel the entire stack before we determine that the exception 
is unhandlable. Otherwise, essential debugging information is 
lost. 

Our solution requires no overhead at call time and uses a 
binary search to identify the relevant exception handler before 
unraveling the stack. At compile time, each exception is 
uniquely identified as to raiee location and reason, and every 
exception handler is uniquely identified as to the exceptions 
it handles, permitting identification of exceptions in a user 
friendly way should a handler not be found. The identification 
information, together with the addresses of the scope of each 
exception handler, is stored in a table in static memory. An 
initialization routine sorts this table before the program 
runs. If an exception must be propagated, the propagation code 
follows the stack pointer chain backwards, searching the common 
exception table for exception handlers that apply to the 
address given by each instance of the stack pointer chain until 
a handler is found. The table can be searched quickly for 
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rapid exception propagation. When a handler is found, the 
stack is quickly unraveled in one operation to the proper point 
and the handler invoked. 

While not an exhaustive list, these items illustrate some 
directions we a r e  taking in the development of an efficient M a  
compiler. Maay of our efficiency oriented algorithms are 
heavily parameterized so that we cam vary their effect and 
study the resulting program behavior. This approach will allow 
UB to tune the compiler for best effect under realistic 
conditions. Results of these efforts will be reported at 1% 

future conference, 

Distributed Programming Model 

When implementing an M a  compiler for a distributed programming 
host computer, there are three levels of capability to be 
considered, namely: 

1. Minimum capability that satisfies the M a  Language 
Reference Manual [ANSI83]. 

2. Permit advice from the programmer to influence the 
implementation or execution of the model. 

3. Enhanced functionality within the requirements of thc Ada 
Language Reference Manual. 

The remainder of this section addresses some issues pertinent 
only to the minimal capability implementation. 

The execution of parallel, distributed processes under one 
computational model introduces such complexities that few 
practical systems today are entirely transparent to the user. 
The mark of a successful implementation is correctness, general 
applicability, and the capability to simplify the task of 
programming parallel execution paths. In contrast, Ada seeks 
to achieve two different goals: a simple inter-process 
communication paradigm and the efficacy of a complete semantic 
check of the entire collection of processes, viewed as a whole. 
Whether these goals are necessary or sufficient for a 
successful implementation is to be determined. 

Ada defines a task model that provides a set of primitive 
communication mechanisms (accepts/entry calls) to implement 
parallel tasks. Although use of these requires explicit 
programmer cognizance, the programmer's task is simplified 
somewhat. The price for thie simplification is that the 
compiler writer must implement correct interpretations for 
three shared elements: data, control via exceptions, and 
program state. Each of these olements is considered separately 
below. 

B.3.1.8 



wmw .. . .. 
I? ,. 

To provide L background for this discussion, some fundamental 
deoign decisions must be noted. The first version of the 
distributed compiler will produce an executable image that 
executes on each distributed host unaltered. In other words, 
the inetaatistion of any module will execute on only one host, 
though its code image is present on all hoete. This decision 
meane that the code on each host ie larger than the minimal 
required, but that addresses not on the stack and not 
dynamically allocated are universally correct from host to 
host. Further, our hardware is a segmented, virtual memory 
machine, so that physical memory is not significantly wasted by 
this decision. 

A eecond design decision is to use the operating eystem message 
passing facility for all intertask communication. Since we 
have compiled the program as a whole, targeted for one uniform 
processor, this communication need not incur the overhead of 
formatting/unformatting data, and BO it can be used for 
co-located tasks as well as distributed tasks. 

A third decision is that only tasks will be considered for 
distribution during the first implementation. (While this ie 
not strictly true as we shall see, this provides the primary 
focus when designing the implementation model.) Further, to 
ease initial implementation efforts, no access variables can be 
referenced acrose a distributed interface. Now let us return 
to a discussion of how we intend to share data, control via 
exceptions, and program state information. 

Data sharing between two asynchronous tasks takes several 
forms. The first is via data that is visible to two different 
tasks by operation of the scope rules of M a .  The Ada Language 
Reference Manual specifies that two tasks can ' s e e '  the effects 
of updating shared variables only at synchronization points 
such as those associated with a rendezvoue or by pragma 
'SHARED', allowing every access of a variable to be a 
synchronization point. However, the Ada Language Reference 
Manual does not require that the compiler detect erroneous 
programs that violate these rulee. A second, indirect way to 
share data is by the common invocation of library routines that 
reference static data. For example, a terminal 1/0 routine in 
a library package might reference static data to define the 
current line number on the screen; every call to this routine 
m:by alter the data. 

Motivated by these two concerns, we have decided that the 
pragma 'SHARED' will not be allowed for two tasks that are not 
co-located within one host process. To addrese the indirect 
aharing of variables via library packages, we define three 
classes of objecte (functions and procedures): idempotent, 
serially reusable, and re-entrant. The first class will 
execute correctly without any historical information. Any 
routine that does not acceas static data or any 'state of the 
world' is in this class. The second class indicates routines 
that access some static data, but that can accept successive 
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call. once the first call is  complete, Most library routines 
are  in thio class. The third class, while they may depend on 
static data, may also be called by another routine the 
first request is complete. These routines, such as I/O 
drivers, usually depend on a separate temporary data etore 
(stack) per task to achieve their re- entrancy. 

before 

If a routine is declared idempotent, then we may execute any 
available local copy of the relevant code, taking no care to 
share etatic data among distributed tasks. This is the default 
nature for procedures and functions. If the routine is 
declared serially reusable, then we will execute the call on 
the one host that contains the inetantiated version of the 
routine, and all calls will be queued in a FIFO manner. If the 
routine is declared re-entrant, then we will execute the call 
on the local host and broadcast any updated etatic data at the 
completion of the call. It is the programmer’e responsibility 
to eneure that the specification of the proper behavior model 
matches his or her intent. 

Another information sharing between two concurrent taeks is via 
the exception propagation structure. Since the colocation of a 
taek and any exception handlers that it may invoke are not 
guaranteed, we must provide both a fast means to determine the 
location of the exception handler and a means to propagate the 
exception to that handler. Our decieion to use a common 
program image allows the exception propagation logic to execute 
ae a idempotent routine, determining the location of the 
handler before invoking any communication overhead. The 
communication required to pass control to a remote eite is 
reduced to the identification of the raised exception. 

Global etate information is shared among distributed processes 
by the Ada requirement for taek termination. When a task h a s  
an open terminate alternative, it must consider the state of 
all dependent tasks, sibling tasks, and the state of the p a r e n t  
task before entering the terminated state. In turn, thie means 
that one must achieve a globally consistent picture of the 
state of all such tasks so that a correct decision can be made. 
There are only two solutions to thie requirement. One solution 
electe or appointe a master controller to determine the state 
of the world, while the other eolution requires periodic 
broadcasting of all etates to achieve a consensus on a 
consistent state. The latter approach ie often called a 
coneietent checkpoint method, and often entails significant 
overhead waiting for all taske to achieve a stable state. F J r  
thie reason, wo have elected to use the first method, by 
electing a ’controller’ task as that task that dominatee the 
immediate terminadtion decieion. By polling meane, outlined in 
[JAH85:, this one taek (actually the local run time system 
attached to that task) will calculate the termination condition 
for all subordinate tasks. 
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Our general direction for implementation of the M a  distributed 
programming model has been decided. Our next step is to 
consider meano to debug distributcd proceeses and to measure 
the effectiveness of our initial implementation. This effort 
will result in a test suite of distributed programs, designed 
especially to teat distributed control algorithms rather than 
just the computational advantage of parallel computation. The 
euite will be then used to evaluate the effectiveness of 
various distributed programming models. 
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Abstract 

The task of creating software to run on a distributed system brings with it many problems 
not encountered in a uni-processor environment. The designer, in addition to creating a 
solution to meet the functional requirements of the application, must determine how to dis- 
tribute that functionality in order to meet the non-functional requirements such as perfor- 
mance and fault tolerance. In the traditional approach to building distributed software sys- 
tems, decisions of how to partition the software must be made early in the design process 
so that a separate program can be written for each of the processors in the system. This 
design paradigm is extremely vulnerable to changes in the target hardware environment, as 
well as being sensitive to poor initial guesses about what distribution. of functionality will 
satisfy the non-functional requirements. The paradigm is also weak in that no compiler 
has a cornplete view of the system. Many of the advantages of using a powerful language 
system are lost in a one-program-per-processor environment. This paper will present 
another approach to the development of distributed software systems, Honeywell's Distri- 
buted Ada program. 

Our Approach 

The goal of Distributed Ada is to develop methodology and tools which will significantly 
reduce the software design complexity for reliable distributed systems. We believe that 
the functional specification of a system (what it will do) can and should be separated from 
its non-functional specification (how it  will be mapped onto the underlying system). The 
functional specification can be developed and expressed in Ada. To this is added the 
specification of the non-functional at'xibutes of the system. Separating the problem space 
into two smaller problems means that the designcr can concentrate on solving each of 
them in turn rather than attacking them together. It also allows software development to 
proceed before hardware final design is complete and enhances the portability of the func- 
tional specification. 

'Ada is a rcRiclercd trademark of the U.S. Govcmmcol Ada Joint h g n m  Office. 
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The software development paradigm we advance is described by the following scenario. 
The designer develops a functional solution to the problem in Ada using uni-processor 
development tools. With a functional solution in hand, she then creates a specification of 
the non-functional characteristics of the solution (more details on the nature of this 
specification will be given later). Using the tools being developed under our program, 
these two specifications can be used to create the distributed solution incorporating the 
non-functional attributes. At this point, the distributed solution can be tested for accepta- 
bility according to non-functional criteria and modified if necessary to meet non-functional 
requirements. 

The advantages of this and similar approaches over the traditional approach of up-front 
distribution dezisions are self-evident. When non-functional specification is separated 
from functional specification, software development can proceed with limited knowledge 
of final hardware configuration and will be little impacted by changes in the underlying 
system. We believe, however, that the granularity of distribution and the mechanism of 
specification employed in our approach separate our work from that done by other 
researchers. 

As opposed to other projects which limit the unit of distribution to the Ada library uni t  
and limit remote access to tasks and subprograms in the visible part of remote units [Inv 
85, Sch 81, Sof 84, Vol 851, we believe that an effective and extensible non-functional 
specification should allow distribution of all subprograms, packages, tasks and objects in 
the Ada specification. A narrower stand on the objects of distribution requires the 
designer to be more conscious of the non-functional requirements while searching for the 
functional solution. While i t  can be argued that a designer who is aware of all the 

requirements of an application will produce a more efficient solution, we believe that the 
tools he uses to produce the distributed solution should impose as few constraints as is 
possible. Constraints imposed at this level directly impact portability and robustness of a 

given functional solution in the face of a changing hardware environment. 

Many researchers argue that the PRAGMA construct in Ada should be used for non- 
functional speciC, ations such as distribution of entities [Inv 85,  Vol 851. We have chosen 
another approach for several reasons. One concern is that an approach involving PRAG- 
MAS will not be extensible to specification of non-functional attributes such as dynamic 
relocation of objects or fault tolerance strategies. Pragma-based schemes for specifying 
distribution are complicated already, attempting to extend these schemes to additional 
domains might prove unwieldy. We also consider it a disadvantage that the pragmas 
would be embedded in  the source and scattered throughout the Ada specification, This 
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makes sharing of library units between applications difficult or impossible. It also 
impedes manipulation of the specification of distribution. If this specification were con- 
centrated in one location rather than dispersed throughout the code, it would be easier to 
form a global picture of system distribution. We also observed that the function to be per- 
formed by these notations was to establish a structuring hierarchy distinct from that of 
Ada. This led us to create a separate specification notation, the Ada Program Partitioning 
Language (APPL) [Cor 84, Hon 85, Jha 861. 

Ada Program Partitioning Language (APPL) 

The goal of the APPL design process was to produce a compact, convenient notation for 
specifying the non-functional attributes of a program. APPL addresses issues of distribu- 
tion of Ada entities, and dynamic relocation and replication of those entities. Extensions 
to APPL to cover fault tolerance specification are under consideration. For brevity, this 
discussion will consider only APPL in general and static distribution in specific. The 
reader is referred to the APPL Reference Manual for a more detailed and formal descrip- 
tion. 

It is useful at this point to introduce some terms. 
A FRAGMENT is a user-specified collection of entities, such as packages, subprograms, 
tasks and objects, from the Ada source program. Every entity belongs to one and only 
one fragment. Membership in a fragment is attained either implicitly, as a result of de- 
fault rules, or explicitly, as a result of inclusion in an APPL fragment declaration. 

A STATION designates a computational resource in the underlying system. Typically, 
this is a node in a distributed system. 

MAPPING a fragment to a station causes all entities in  that fragment to reside on that sta- 
tion at runtime. 

A PROGRAM CONFIGURATION refers to a specific partitioning of a program into a 
collection of fragments, and the specific mapping of the resulting fragments onto stations. 

An APPL specification completes a Program Configuration and consists of two parts. The 
first of these, the configuration specification, specifies the fragmentation of the Ada pro- 
gram, while the latter, the configuration body, specifies the mapping of fragments to sta- 
tions. 

The configuration specification provides a mechanism for specifying Ada entities to be 
bundled together as a fragment. With a few exceptions, such as within unnamed blocks, 
these entities can be selected from within any declarative region in the program. As a 
convenience, APPL semantics implicitly declare a fragment for every library unit  which 
make up a program. It also provides a mechanism for further bundling fragments into 
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fragment groups. Fragment groups, like fragments, arc mutually exclusive and are treated 
like fragments in mapping. 

The configuration body is a simple section specifying a conespondcnce between fragments 
and stations. 

AS an example to illustrate the use of APPL, consider the following Ada text. 
with TEXT-IO, REAL OPERATIONS; use REAL-OPERATIONS; 
package EQUATION SOLVER is 

procedure QUADRATIC EQUATION; 
procedure LINEAR-EQUATION; 

end; 

package body EQUATION-SOLVER is 

end EQUATION-SOLVER; 

with EQUATION SOLVER; 

begin 
procedure MAIN is 

end MAIN; 

Also consider the following configuration specification. 
with MAIN, EQUATION-SOLVER, REAL-OPERATIONS; 
configuration PROTOWE is 

fragment QUAD-EQUATION is 
use EQUATION SOLVER; 
procedure QUA~RATIC-EQUATION; 

end QUAD-EQUATION; 
end PROTYPE; 

Recall that APPL implicitly declares a fragment for each library unit involved. Thus the 
implicitly declared fragments are: MAIN, EQUATION-SOLVER, TEXT - IO, and 
REAL - OPERATIONS. QUAD-EQUATION is an explicitly declared fragment containing 
the procedure QUADRATIC-EQUATION from the library unit EQUATION - SOLVER. 
An example configuration body is shown below. 
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configuration body PROTOTYPE is 
map EQUATION-SOLVER, MAIN, TEXT-IO onto !3TATION-1; 
map QUAD-EQUATION onto STATION 2; 
map REAL-OPERATIONS onto STATIO%-3; 

end PROTOTYPE; 

An APPL specification, together with the Ada source, constitute a description of a distri- 
buted software system. It is the function of the tools we are developing to actually pro- 
duce this system. 

Distributed Ada Tools 

In order to avoid spending a large amount of development time on issues not strictly 
related to distributed systems, we have chosen the approach of modifying an existing Ada 
language system rather than creating one from scratch. Two major tools in any Ada 
language system are the compiler, which maintains the Ada program library and produces 
object code for strings of compilation units, and the linker, which must determine and gen- 
erate code for library unit elaboration and actually assemble the final executable image. In 
the compilation environment, these tools are the most drastically affected by retargeting to 
a distributed environment. 

Modifications to the compiler are perhaps the most dramatic. Obviously, the compiler 
must be made aware of the fragmentation and mapping specified by APPL. Therefore, the 
first phase of distributed compilation consists of modifying the intermediate representation 
(DIANA, for our purposes) of the Ada library units and their secondary units by adding a 
"fragment" attribute to the DIANA nodes. This allows the compiler to determine the sta- 
tion of residence for that entity. 

From the modified DIANA representation of a compilation unit, a linearizer generates 
intermediate language (IL) code for the compilation unit. This linearizer, in particular, 
must be significantly more complex than i t  is required to be in a uni-processor compiler. 
It must now produce an IL code module for each of the stations to which fragments of the 
compilation unit have been mapped. Of even more significance, is the fact that it must 
generate proper code to reference entities on remote stations. This task is simplified 
somewhat, because the problems associated with distributed Ada tasking will be dealt with 
by the runtime environment (discussed in the next section) and will be invisible to the 
compiler. However, most every other aspect of IL generation is affected. Fetches and 
stores to remote variables, for example, will require calls to special runtime primitives for 
remote data access. 
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As another example of the issues involved in this stage, consider the problem of parame- 
ters to a remote subroutine call. In a uni-processor system, it is efficient to pass large 
parameters by reference rather than by value. A pass-by-reference mechanism could be 
employed in remote subroutine calls bj adding a station address to the parameter address. 
But this would mean that every reference to the parameters of a procedure that could be 
called remotely would involve the remote data access mechanisms. Since parameters are 
likely to be heavily utilized in computation, this appears to be an undesirable situation. 
Our solution to this problem involves the generation of local 'stubs' whose purpose is to 
package the parameter values and L msmit them to the remote system. The runtime 
environment on the remote station will disassemble the package and call the procedure in 
question. Since this call looks just like any purely local call, the code generated for the 
called procedure is unchanged. (Note: This mechanism cannot be applied to access types. 
They must be handled by a reference mechanism similar to that mentioned above.) 

Once these multiple intermediate code modules have been produced, object code. genera- 
tion on each of them should continue in a fairly normal manner and the final object files 
can be passed on to the linker. In the Distributed Ada environment, our scenario involves 
the production of multiple executable images, one for each station in the system. This 
will require modifications to the linker, which will have to resolve symbols between multi- 
ple executable images, something which no uni-processor linker would ever have to do. 
Fortunately, these linker modifications are not conceptually difficult and represent only an 
engineering problem. 

Run time Environment 

The execution environment considered consists of a network of stations and a copy of the 

runtime system on every station. The runtime system makes the underlying hardware 
appear to the distributed application as an Ada virtual machine. 

There is a minimum set of facilities that must be provided by the distributed runtime sys- 
tem, independent of the granularity with which an Ada program is partitioned. It must pro- 
vide reliable inter-station communication and synchronization, a consistent view of distri- 
buted state information at each station, a globally consistent view of time, and means to 
deal with partial failures in the underlying system. 

The overall complexity of the distributed runtime system depends on the support i t  pro- 
vides for binding the application fragments together dynamically, for making the applica- 
tion fault-tolerant by masking station and network faiiures from it,  and for representation 
conversion between heterogeneous stations. 
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There is a spectrum of possible binding times. If binding is done statically before execu- 
tion time, it is not possible to reconfigurc an application during execution by remapping 
one or more of its fragments. Dynamic binding is the most flexible. The mechanism can 
bc used effectively by the runtime system to reconfigure an application as a means of pro- 
viding fault-tolerance, or of changing the configuration as resource requirements change 
during execution. If the underlying system is heterogeneous, the binder must also insert 
representation conversion filters for values that an passed between the remote fragments 
that it binds together. 

The complexity of the runtime system is only marginally affected by the choice of the set 
of Ada entities that can be distributed. The apparent similarity between concurrency in 
Ada tasks and concurrency of execution on a network of processors may initially suggest 
that tasks be made the unit of distribution. However, a close examination will quickly 
show that this restriction does not really simplify the runtime support needed. 

The allowed granularity of partitioning has a greater impact. For the sake of an example, 
consider the case where Ada library units are the unit of distribution. The runtime system 
must support calling of remote subprograms, reading and writing remote data, and tasking 
operations on remotely located tasks. Since Ada task dependencies do not cross library 
unit boundaries, the semantics for task termination can be implemented in a manner that 
gainfully uses the knowledge that the task dependencies cannot cross station boundaries. 
This simplification is not available if a finer granularity of partitioning is allowed. I n  
application areas where the size and efficiency of the runtime system are critical, we think 

that the specific requirements of the application domain shodd be taken into consideration 
when deciding the granularity of program partitioning. 

Project Status and Plans 

Honeywell’s Distributed Ada project was started in 1982. A preliminary version of APPL 
was defined in 1983 [Cor 841. A prototype implementation based on source-to-source 
transformation and an unaltered uni,,processor compiler was built during the following 
year. i n  1985, the structure of APPL was changed and the language revised and forrnal- 
ized won 85, Jha 861. Current development focuses on creating the specialized tools and 
runtime environment described above. In order to manage the implementation, we have 
divided its development into several stages. Phase 1, which we are currently working 
under, calls for a fully functional system, limited to homogeneous systems and static dis- 
tribution of objects declared in the visible portion of library units (and the units them- 
selves). We hope to complete this phase of development by the end of 1986. We are 
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using the VERDIX Ada Development System (VADS*) as the baseline compiler from 
which to create the Distributed Ada system and arc operating in a simulated network 

e n h n m e n t  using processes under Unix3. Future development phases call for support for 
heterogeneous systems, dynamic reconfiguration, object replication and fault tolerance. 
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Introduction 

Tile Advanced Information Processing System (AIPS) is a data processing architecture 
designed to mre: the reliability requirements of space vehicle applications. The Charles Stark 
Draper Laboratory is presently building an AIPS proof-of-concept prototype*. Ada was selected as 
the programming language in which major system services would be implemented. One part of thc 
ALPS architecture is a fault tolerant input/output network which is under the control of a software 
module called thc Network Manager. Ada provides a user with a significant number of options for 
implementing ii given aspect of a design. During the development of the prototype Network 
Manager, some language constructs were found to be particularly well suited for certain types of 
situations. In one case the language did not provide a desired feature. Experience with Ada ah a 
programming language for this application will be described here. 

Background 

UsinP Ada 
Training in Ada was accomplished by a combination of viewing a subset of video taped 

tutorials prese;itc:d by Jean lchbiah, Robert Firth, and John Barnes, participation in an in-house 
course in Ada 1 ,,ins the Chdy  Booch text Sofhvare Engineering h h  and a lot of "learning b!, 
doing". Inifir-illy rhe work in the in-house course and the "learning by doing" were somewhar 
impeded by the absencc of a reliable in-house compiler which supported full Ada. This problcm 
was greatly red!lccd by thc timely arrival of the Digital Equipment Corporation's (DEC) Ad;i 
compiler and daciopmcnt systeiii for the VAX3. 

'I'he iiii:roprocessor used in the prototype system is the Motorola 68010. Since a compilcr 
which handled l u l l  Ada was not available for this machine, i t  was decided that initial design a r i d  
development of programs would be done on the V A X  using the DEC Ada compiler. This St r i l lCS !  
was based in large part on the portability of Ada code and the fact that Ada compilers which targcl 
the 68000 microprocessor were expected to be available well within the development time o f  ~ l i c  

1 Ada i h  ;I regihtcrcd trademark of h e  US. Covernmcnf (Ada Joint Progr;tni Office). 
2'1'1iis work is supprkd  by NASA under JSC contract NAS9-17560. 

3 V A X  is ;I registered trademark or tlic Digital Equipment Corporation. 
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PrOt?tyF system. Thus progress in designing and programming the various modules could 
contmue ununpeded by artificial constraints in the language. 

mmSvstem 
The AIPS architecture is highly modular. The needs of a specific application can be met 

by selecting components from a set of hardware building blocks and software system services. 
One such building block is a fault and damage tolerant inputloutput network which allows 

a data processing element (typically a Fault Tolerant Processor or FIT) to communicate senally 
with YO devices. The network consists of a number of full duplex links that are connected by 
circuit switched nodes to form a conventional multiplex bus. In steady state, the network 
configuratipn is static and the circuit switched nodes pass information without the delays 
associated with packet switched networks. Since not all pathways are enabled, the network has a 
set of spare links which allow it to be reconfigured in response to a failure. A network may serve 
only one processing element or it may be shared by several processing elements which contend for 
access to the network. In the case of a network dedicated to one processing element, a unique 
network configuration is possible. Such a network may be divided into subnetworks which allow 
an application to conduct simultaneous I/O operations with redundant, parallel devices from each 
subnetwork. Network organization and operation is completely transparent to an application 
running on the system. 

The system service which is responsible for the reliable operation of an YO network is the 
I/O Network Manager. The Network Manager can be run in any processing element connected to 
the physical network to be managed. It performs network initialization, fault detection and 
isolation, reconfiguration to a fault free state, testing for latent faults and status reporting. 

High level design objectives of the network manager software for the prototype include 
transparency to network users, adaptability to dynamically changing system configurations, 
portability within the system, and modularity. Ada language constructs have been found which 
support these design goals. A full Ada version of the design has been compiled and run on a 
VAX 8600 using DEC's Ada compiler. To facilitate testing on the VAX, an Ada simulation of the 
network has also been developed. Installation of the full Ada version on the AIPS Fault Tolerant 
Processor must await the release of a compiler which targets the Motorola 68000. However, a 
modified version of the network manager has been compiled on the VAX using the Telesoft 1.5 
cross compiler and is awaiting system test and integration. 

' 
Implementing the Network Manager in Ada 

Overview 
The number of Network Managers which a system needs depends on the number of 

physical networks in use. This number can vary from system to system and within a system over 
time. However, the number of networks which can be managed from a given processing site is 
bounded by the number of physical 110 interfaces it has. For the prototype system this upper limit 
is six. Furthermore, when a network is partitioned into subnetworks, each partition requires its 
own I/O interface. Thus a given processing element could manage at most six networks and/or 
subnetworks. From the point  of view of the Network Manager, there was no functional distinction 
between the control of a network and the control of a partition . 

The Network Manager is a system service which would be provided on demand of the 
System Manager. The System Manager is another software module which coordinates all other 
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System Services. The software for an active Network Manager process would consist of two 
major parts: a data store describing the toplogy of the network to be managed and the coded 
algorithms to provide the functions descnbed above. Specific information about the network 
topology (e.g. the number of nodes and links in the network) would not be available until run time. 
Thus two factors motivating the design were the need to be able to start and stop the process on 
demand, and the ability to manage a network topology which is to be determined at run time. 

The fact that several networks could be managed in parallel from a given processor 
required a non-reentrant module to coordinate the starting and stopping of the various manager 
processes. However, each manager was itself an atomic unit, requiring only information about 
the topology to be managed for it to be off and running on its own. Thus the Ada package was 
used to implement the system service of network management on a particular processor. The Ada 
task type was chosen to conduct the lcgic of managing a particular network. Other Ada packages 
were used to coordinate access to irlformation about the various network topologies in the system 
and to encapsulate the data format required for communication with the prototype network nodes. 
Finally, the need for keeping die System Manager apprised of the status of network components 
was met by another tx ' :  type which provided mutually exclusive read/write operations to a 
protected object containing current status information. The relationship among these various 
components is graphically depicted in Figure 1. 

package  IO - NETWORK - MANAGER 
This package provides the capability to manage the fault tolerant network defined by the 

A P S  architecture. A user, in this case the System Manager, can then start or stop management of 
any network in the system. The software for this module would need to be resident in each 
processing site which could in fact manage a network. 

The visible interface to this package is composed of two procedure calls, START and STOP. 
The calling process first designates the dcfinition (Le. the topology) of the network to be managed 
through its interface to the data base package. It then calls the START procedure. When this call 
completes, network management is underway and network status is available. The call to STOP is 
also preceded by a call to the database to designate the network to be stopped. When the call to 
STOP completes, management of the indicated network is terminated and all resources allocated to 
that process are restored to the system. Thus network status is no longer available for that network. 

0 

task type  N E W 0  R K - M M A  G ER 
A task object is created in the body of IO-NEIWORK-MANAGER for each VO network to be 

managed from a particular FTP. If a network is partitioned into a number of subnetworks, each 
subnetwork will be allocated its own manager task. 

The concept of a partitioned network was devised to allow applications to conduct I/O 
operations with redundant, parallel devices resident in separate partitions. Within each subnetwork 
arc a certain number of spare links which allow failures to be repaired intrapartition. While such a 
repair is taking place, communications on the other subnetworks can operate normally. To support 
this feature, management of the 110 networks is not conducted synchronously. Each partition i s  
under thc control of its own task object which performs its functions independently of the other 
su bnetworks. 

Since the number of possible networks which a given processor can manage is known in 
advance and is a relatively small number (currently six), a table of access types to these task objects 
is declared within the package body. The .START and STOP procedures described above have 
access to this table. The task object has three entry calls. Not surprisingly they are a 
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start, stop and sfurt status. During the srart rendezvous, the task object makes a local copy of its 
network d e f d t i o n . h r i n g  the start-srarus rendezvous, the network manager task initializes the 
protected status object. This rendezvous is also used to synchronize the two processes which can 
access this shared status object; i.e. the status reader will not be able to read until the status writer 
has written at least once. The task proceeds to "grow" a network. It then enters a loop whereby i t  
will either accept an entry call to srop or will periodically monitor the network for faults. If faults 
are detected during monitoring, fault isolation and reconfiguration logic is activated. An alternate 
approach to the monitor-maintain cycle currently under consideration would provide this activity on 
demand when communication erron are detected in communications conducted on the network for 
application functions. The call to srop causes the process to exit its loop and come to its natural 
end at which time its resources are explicitly deallocated. 

package IO-DATA-BASE, package NOD E-MESSAGE-FORMATTING 
and other &a structure considerutions 

The numbers of various network elements , i.e. nodes, links, YO devices,etc., can vary 
from network to network, but within a given network topology, they are static. The fist  approach 
to the data abstraction process focussed on defining types to contain network topology 
information. The basic connecting unit of a network is a node. The AIPS prototype node has five 
ports. Each port may be connected to another node, a processor interface unit or an 110 device 
interface unit Hence infonnation about the element adjacent to a given port could be contained in 
a discriminated record where the information stored would depend on the type of that element. Five 
such records grouped as an array could make up one field of a larger record containing other 
information about the given node. Finally, a collection of these node records would define a 
topology for a given network. This collection was also housed in a discriminated record where the 
discriminant was the number of nodes (which was given a default value) and the other field was an  
array containing that number of node records. This structure has the additional feature that objects 
of this type could be declared within the network manager task type and would upon allocation of 
the task object have the default value number of nodes. Later this object could be updated to reflect 
the actual number of nodes in the network to be managed. A major wcngth of this approach was 
that of run time reliability. The compiler generated checks will e n u r e  the correct usage of this 
structure, Le. the user cannot access a portion of the structure where values are meaningless. A 
simple array that is large enough to hold data for any case could be misused in this way. However, 
the major drawback to this design was that each object so declared was allocated enough memory 
to hold as many members as the maximal value of the type of the discriminant. 

A second design solved this problem of wasted memory space while retaining the ability to 
dynamically create array objects with the correct number of cells. This design used an access t y p e  
to an unconstrained array type. A variable of this type is declared in the body of the task type. The 
number of nodes and a pointer to an array of node records are passed as rendezvous parameters to 
the activated task. During the rendezvous, the object accessed by the local pointer is allocated with 
as many cells as there are nodes in the network. These cells are assigned values by applying the 
'.all' construct to the local access variable and the rendezvous parameter. The only feature that is 
lost with this solution is the ability to later change the number of cells in the object. Since this 
network topology is constant for the lifetime of the task, this feature is not necessary here. 

'The discriminated record array structure did prove useful in another application. Sincc thc 
network is a shared resource, the various processing elements using the network must contend for- 
access. To reduce the overhead of the contention processing, a set of messages are grouped 
together in what is called a "chain". Messages are sent to nodes in chains. However, the number 
of messages to be sent to the nodes will vary with the reason for the communication. Thus thc 
number of messages in a given chain will vary. For example, when monitoring the netwo:k, all 0 
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the nodes are sent messages. When growing the network, only one or  two nodes are sent 
messages. When reconfiguring the network or testing spare links, it may be necessary to send 
messages to several nodes in one chain so as not to leave the network in an inconsistent state for 

other network users before completion of the reconfiguration or test. Thus objects containing node 
messages will vary in length during the life of the task. Rather than create an object for each 
possible length chain, an object of the discriminated record m a y  type was used. In this 
situation,the cost in extra memory is relatively small since each node message is only six bytes 
long and the prototype network may contain at most thirty-two nodes; however, the extra flexibility 
facilitates processing. 

An operation provided by the data base package allowed a significant reduction in the 
memory needed to store topology data as well as the need to ensure that multiple copies of data 
remain consistent. Any FlT connected to a network can manage that network. The definition of the 
network used by a manager is the same regardless of the processing site except for the particular 
nodes (called root nodes) which connect the site to the network. Given the array of node records 
described above and the identity of the FTP, it is possible to derive the root node information. 
Thus network definitions can be stored centrally without regard for local variations which are 
derivable on demand. 

A final Ada feature which proved useful in the data abstraction process was the 
representation clause. The prototype node expects to receive a message containing six bytes of 
data. Each byte in turn contains one or two bit wide fields which the node decodes to obtain its 
control informatiox Rather than having to remember that bits zero and one of byte three control 
whether or not a ?lode is permanently reconfigured or only reconfigured for the next transmission, 
the representation clause allowed a type called CONFIGURATION-LIFETIME to be given two values, 
ONCE-ONLY and P E R M A N E N T ,  with specific base two representations. The representation clause 
further allowed the node message type to be assigned to a specific two bit wide field for the lifetime 
information. Other fields in this record were named and positioned in a similar fashion. The 
programmer need not be concerned with masking and shifting to set up a node message. Code 
using these messages could be written more quickly and more reliably. Furthermore, the code 
becomes self-documenting and therefore easier to test. When the message needs to be stored in a 
general area of memory, unchecked conversion would allow the safe transfer cf the byte organized 
information. This is the case when the message is written to a dual ported memory just prior to 
transmission on the network. Finally, this node dependent information was packaged as a u n i t  
which would shield the rest of the software from any necessary design changes in node hardware 
or protocol. 

Ada currently does not allow a function to accept 'in out' parameters. While this makes 
sense in the context of a mathematical function, in the context of a computer program, T. broadcr 
definition of 'function' can be supported. In this context, a function is a language construct t h a ~  
does something and returns a value as part of its call. In the network manager such a language 
feature would have been a great asset in  conjunction with the short circuit 'and then' construct. 
During growth of a network, a node is subjected to a series of tests before i t  is forma!ly added IO 
h e  network. These tests are sequential i n  nature. I f  a node fails a test in the sequence, thc 
rcmaining tests are doomed to fail and therefore need not be performed. A very elegant w a y  of 
coding this testing sequence was: 
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if PASS-TEST-1 
and then PASS-TEST-2 
and then PASS-TEST-3 
and then PASS_TE!j"-4 

then ACTION; 
else OTHER-ACI'ION; 

end if; 

where the PASS-TEST-NS are boolean functions, This code is easy to read and understand; i t  is 
also self-documenting. 

The problem m s e  because each test needed to log error detection information as it was 
discovered. Since a global object was not desired here, other designs were examined. These 
included procedure calls for the tests within nested if then else statements and the calling of these 
procedures from functions declared locally within each subprozram performing the tests. 
However, none of these designs were so simple, straightfonvard or self-documenting as the 
original. It is hoped that this example will provide some additional motivation for a change in this 
restriction. Perhaps another type of subprogram would be the most acceptable solution. 

Conclusions 
From an implementation standpoint, the Ada language provided many features which 

facilitated the data and procedure abstraction process. The language supported a design which was 
dynamically flexible (despite strong typing), modular, and self-documenting. Adequate training of 
programmers requires access to an efficient compiler which supports full  Ada. When the 
performance issues for real time processing are finally addressed by more stringent requirements 
for tasking features and the development of effir.ient run-time environments for embedded systems, 
the full power of the language will be realized. 
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Introduction 

I n  any d i s c u s s i o n  of d i s t r i b u t i n g  programs and e n t i t i e s  
of programs w r i t t e n  i n  a h i g h  o r d e r  i a n g u a g e  ( H O L ) ,  c e r t a i n  
i s s u e s  n e e d  t o  b e  i n c l u d e d  b e c a u s e  t h e y  a r e  g e n e r a l l y  
independen t  o f  t h e  p a r t i c u l a r  l anguage  i n v o l v e d  and have a 
d i r e c t  impact  o n  t h e  f e a s i b i l i t y  of d i s t r i b u t i o n .  O f  s p e c i a l  
i n t e r e s t  is t h e  d i s t r i b u t i o n  of Ada program e n t i t i e s ,  b u t  
many o f  t h e  i s sues  i n v o l v e d  a r e  n o t  s p e c i f i c  t o  Ada and 
would requi re  r e s o l u t i o n  whether  w r i t t e n  i n  P a s c a l ,  PL/1 , 
C o n c u r r e n t  P a s c a l ,  H A I , / S ,  or a n y  l anguage  w h i c h  p r o v i d e s  
s i m i l a r  f u n c t i o n a l i t y .  T h e  f o l l o w i n g  sect ions w i l l  enumera te  
some o f  t h e s e  i s sues ,  and w i l l  show i n  what ways t h e y  r e l a t e  
t o  Ada. Also ,  some ( b u t  by n o  means  a l l )  of t h e  i s s u e s  
i n v o l v e d  i n  t h e  d i s t r i b u t i o n  of Ada programs and program 
e n t i t i e s  w i l l  b e  d i s c u s s e d .  

J u s t i f i c a t i o n  

B e f o r e  i n t r o d u c i n g  s u c h  a s u b j e c t ,  i t  1s p e r h a p s  
r e a s o n a b l e  to  p r o v i d e  a r a t i o n a l e  f o r  d i s t r i b u t i n g  a named 
r e s o u r c e  of a HOI, program i n  the f i r s t  p l a c e .  T h  r e a s o n s  
a r e  s t r a i g h t -  f orward.  

F i r s t ,  and  p r o b a b l y  most i m p o r t a n t ,  i s  t h e  i s s u e  of  
r e l i a b i l i t y .  Computers a r e  i n c r e a s i n g l y  used i n  apr i i c a t i o n s  
which r e q u i r e  h igh  r e l i a b i l i t y ,  b e c a u s e  t h e y  impac. l i f e  and 
p r o p e r t y  (sometimes l i t e r a l l y )  . Embedded a p p l i c a t  _oris w h i c h  
p r o v i d e  l i f e  s u p p o r t ,  control  g u i d a n c e  and n a v i g a t i o n ,  o r  
m a n a g e  w e a p o n s  a r e  e x a m p l e s .  A f a i l u r e  o f  s u c h  a n  
a p p l i c a t i o n  c a n  b e  d i s a s t r o u s .  By d e c e n t r a l l z i n g  t h e  
s o f t w a r e  ( a n d  o f  c o u r s e ,  t h e  h a r d w a r e ) ,  w e  c a r .  p r o v i d e  
s y s t e m s  t h a t  n o t  o n l y  d o  n o t  have s i n g l e  p o i n t s  of f a i l u r e ,  
b u t  t h a t  a r e  f a u l t - t o l e r a n t .  Such s y s t e m s  can  r ecove r  from 

1 Ada is a r e g i s t e r e d  t rademark  of t h e  U . S .  Government 
( A J P O )  
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failures once they are detected. (This approach should not 
be confused with fault-avoidance, which attempts to prevent 
failures from impacting the system in the first place.) 

The second reason is that of the decreasing cost of 
hardware, especially with respect to the ever-increasing 
Cost Of software. In order to make the most, economically, 
of the power of software, utilization of multiple processing 
resources is desirable. Parallel processing is an example. 

The third reason is extensibility, in the domains of 
performance and functionality. When the software system 1s 
designed with distribution as a design criteria, the 
resulting modularity provides a design that does not 
necessarily have to be radically changed for increases in 
processing power (for performance) or for the addition of 
new modules (for additional functionality). In a system 
intended to have a long, evolving life cycle, this is a 
major issue. 

Fourth, given limited resources of operational costs, 
hardware , communi c a t ions , and in f (j. r ma t i on, w h e n t hose 
resources are themselves distributed (as in Space Station) , 
resource sharing implies that only those elements that 
require direct access and are to be held accountable for the 
integrity of the resource should be located in proximity to 
that resource. In this case, distribution of the software 
allows only that part which interacts with the resource to 
b e  p r e s e n t  ( w i t h  potential b e n e f i t s  of reduced 
communications costs and localization of accountability). 

T h e  f i f t h  reason is the issue of the fidelity of 
modelling solutions to real world problems that are 
distributed in nature. Such problems are complex enough 
without adding additional complexity by distorting t h e  
solution model to fit a non-distributed HOL with no support 
for cooperating, parallel activities, or for recognizing 
both exceptions to normal processing and the context in 
which the exceptions occur ( s o  thit appropriate fault 
tolerance and fail-soft activities can be supported). For 
example, the Space Station Program will eventually involve 
ground support stat ions , f ree-f ly ing plat forms , the Stat ion, 
orbital transfer vehicles, and other components. These 
components are intended to interact in an integrated, end- 
to-end information environment. (Put simply, any asthorized 
user at any component of the environment who desires to 
access entities should be given timely access to such 
entities without regard for the location, replication, 
number of processors supporting the access, or means of 
providing fault tolerance.) Obviously, a model of the 
solution to these challenges involves a high degree of 
distributed parallel processing activities which must evolve 
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kh 'k&k't-&f&tXve, adaptable,  and sa fe  f a s h i o n .  

F i n a l l y ,  t h e  issue of p e r f o r m a n c e  s h o u l d  b e  a d d r e s s e d .  
I t ,  too, is s t r a i g h t - f o r w a r d .  When t h e  a p p l i c a t i o n  demands 
t h e  a d v a n t a  es and  b e n e f i t s  of d i s t r i b u t i o n ,  t h e  p r i c e  O f  

however ,  t h a t  d i s t r i b u t i o n  w i l l  n o t  a u t o m a t i c a l l y  mean poor  
p e r f o r m a n c e .  I n  f a c t ,  d i s t r i b u t i o n  w i l l  i n  some c a s e s  
imp;rove p e r f o r m a n c e  b y  d e c r e a s i n g  c o m m u n i c a t i o n  c o s t s ,  
t a k i n g  a d v a n t a g e  of remote ha rdware  resources ,  and so on.  

The above  r e a s o n s  s h o u l d  b e  s u f f i c i e n t  f o r  i l l u s t r a t i n g  
t h e  n e e d  f o r  d i s t r i b u t e d  s o f t w a r e .  T h e  g e n e r a l  i s s u e s  
i n v o l v e d  i n  d i s t r i b u t i o n  w i l l  f o l l o w .  

decreased e s f i c i e n c y  mus t  be p a i d .  I t  s h o u l d  b e  u n d e r s t o o d ,  

V i s i b i l i t y  

One of t h e  p r i m a r y  u n d e r l y i n g  c o n c e p t s  i n  d i s t r i b u t i n g  
a HOL program is t h a t  of " v i s i b i l i t y " .  I n  t h i s  c o n t e x t ,  
v i s i b i l i t y  m e a n s  " t h e  s e t  of o b j e c t s  w h i c h  may b e  
p o t e n t i a l l y  r e f e r e n c e d  a t  a n y  p a r t i c u l a r  p o i n t  i n  a 
proqram".  T h e s e  o b j e c t s  i n c l u d e  b o t h  da t a  and c o d e  modules ,  
s u c h  a s  v a r i a b l e s  a n d  s u b r o u t i n e s .  D e p e n d i n g  o n  t h e  
d i s t r i b u t i o n  scheme, t h e s e  objects may or may n o t  b e  l o c a l l y  
a v a i l a b l e .  I n  t h o s e  i n s t a n c e s  where t h e  o b j e c t  i s  r e m o t e ,  
t h e  Run T i m e  S u p p o r t  Envi ronment  (RTSE) w i l l  b e  r e q u i r e d  to 
h e l p  f u l f i l l  t h e  s e m a n t i c  r e q u i r e m e n t s  o f  a g i v e n  r e f e r e n c e .  
F o r  e x a m p l e ,  t h e  p r o g r a m  may h a v e  some of i t s  v a r i a b l e s  
d i s t r i b u t e d  a c r o s s  r e m o t e  s i t e s .  A r e f e r e n c e  t o  s u c h  a 
remote  object  w i l l  r e q u i r e  c o o p e r a t i o n  among t h e  t w o  R T S E s .  
T h e  c a l l i n g  RTSE w i l l  h a v e  t o  c o n t a c t  t h e  RTSE of  t h e  
p r o c e s s i n g  s i t e  a t  w h i c h  t h e  v a r i a b l e  i s  l o c a t e d ,  w i t h  a 
r e q u e s t  for  t h e  c u r r e n t  v a l u e  of t h e  v a r i a b l e .  T h e  r e m o t e  
( c a l l e d )  RTSE m u s t  l oca t e  t h e  v a r i a b l e ,  g e t  i t s  v a l u e ,  and  
send  back  a message  c o n t a i n i n g  t h a t  v a l u e .  (The r e c o v e r y  of 
a f a i l u r e  of one  of these messages is non-trivial.) 

As c a n  b e  s e e n ,  t h e  v i s i b i l i t y  of o b j e c t s  p l a y s  a 
c o n s i d e r a b l e  p a r t  i n  d e t e r m i n i n g  t h e  c o m p l e x i t y  of t h e  RTSEs 
i n v o l v e d .  

D i s t r i b u t i o n  Scheme 

A d i s t r i b u t i o n  scheme may o f t e n  be d e s c r i b e d  i n  t e r m s  
of t h e  v i s i b i l i t y  r u l e s  of t h e  i m p l e m e n t a t i o n  l a n g u a g e .  
T r a d i t i o n a l  b l o c k - s t r u c t u r e d  l a n g u a g e s ,  s u c h  a s  ALGOL and 
P a s c a l ,  u s e  n e s t i n g  t o  c o n t r o l  v i s i b i l i t y  of  l o c a l l y  
d e c l a r e d  d a t a  and s u b r o u t i n e s .  T h e  v i s i b i l i t y  r u l e s  of t h e s e  
l a n g u a g e s  a r e  s u c h  t h a t  t h e  i n n e r  d e c l a r a t i o n s  o f  
s u b r o u t i n e s  and  d a t a  a r e  v i s i b l e  to f u r t h e r  n e s t e d  u n i t s  i n  
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the same declarative region, but not to outer units at the 
same nesting level. A global section of data is directly 
visible, and of course outer-level subroutines are visible 
to Successively declared subroutines at the same level, in a 
linear manner. 

A S  previously shown, the visibility rules directly 
impact the complexity of the required RTSE by determining 
the set of entities that may be referenced at a particular 
point. This complexity represents a major factor in 
determining the feasibility of a distribution scheme itself. 
Those schemes which reflect visibility rules that restrict 
the size of the name space are easier to implement. 

The distribution schemes form a spectrum based on the 
visibility rules and the constructs of the source language 
involved. For example, if the distribution is to be at the 
individual statement level, (representing one extreme) , then 
any object referenced may be remote, including components of 
complex expressions. (The resulting RTSE requirements would 
be extensive. The instance discussed under "Visibility" 
above is an example.) If distribution is to be at the 
compilation-unit level, (the other extreme) , then the set of 
all entities that may be referenced is reduced to globally 
visible entities, such as subroutines and their 
parameters. In effect, the distribution scheme controls the 
size of the distributable name space, and therefore the 
complexity of the RTSE. 

Time 

Another important concept is that of time, either 
expressed in the program directly, or in the underlying 
RTSE. The basic problem is that in order to provide correct 
semantic execution, distributed program units require the 
same effects as a consistent, unified version of time that 
would be provided in a non-distributed environment. 

As an example of directly expressed timing, if one 
module requests a service of another remote module, with a 
specified amount of time allowed for the request to be 
fulfilled, the two modules must have a common view of time 
for the request to have any meaning. Note that this does not 
mean that the two modules' clocks are necessarily 
synchronized, only that they be mutually consistent while 
the request is being served. 

In the underlying RTSE, certain operations and actions 
often need to be synchronized with respect to each other for 
correct operation and support of a source program. This will 
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a l s o  be  r e q u i r e d  i n  a c o o p e r a t i v e  manner among t h e  RTSES 
s u p p o r t i n g  d i s t r i b u t e d  programs. 

Semantic Integr i ty  

A c r i t i c a l  c o n c e p t  is t h a t  of s e m a n t i c  i n t e g r i t y ,  w h i c h  
m e a n s  t h a t  t h e  m e a n i n  of c o n s t r u c t s  a n d  program u n i t s  m u s t  
be m a i n t a i n e d  w i t  7;-9 out  r e g a r d  for d i s t r i b u t i o n .  F o r  i n s t a n c e ,  
a c a l l  t o  a s u b r o u t i n e  m u s t  h a v e  t h e  same s e m a n t i c  e f f e c t ,  
or m e a n i n g ,  r e g a r d l e s s  of t h e  r o u t i n e ' s  a c t u a l  l o c a t i o n  w i t h  
respect t o  t h e  c a l l e r .  Note t h a t  t h i s  does n o t  mean t h a t  t h e  
b e h a v i o r  i s  t h e  same, e s p e c i a l l y  w i t h  r e s p e c t  t o  t e m p o r a l  
p e r f o r m a n c e .  ( I n  o t h e r  w o r d s ,  i t  h a s  to  work t h e  same, b u t  
n o t  n e c e s s a r i l y  w i t h  t h e  same t i m i n g  and  s p a c e  p r o f i l e . )  

A s p e c i f i c  a s p e c t  o f  s e m a n t i c  i n t e g r i t y  i s  t h a t  t h e  
s e m a n t i c s  o f  a g i v e n  c o n s t r u c t  a r e  t o  b e  i n v a r i a n t  o v e r  
f a i l u r e s  of t h e  p rocesso r s  e x e c u t i n g  t h e  c o r r e s p o n d i n g  
object c o d e .  F o r  e x a m p l e ,  t h e  s e m a n t i c s  o f  a s u b r o u t i n e  c a l l  
a r e  s u c h  t h a t ,  o n c e  t h e  c a l l e d  r o u t i n e  is c o m p l e t e d ,  
e x e c u t i o n  r e s u m e s  i n  t h e  c a l l i n g  module .  I i i  a d i s t r i b u t e d  
c o n t e x t ,  i n  w h i c h  t h e  c a l l e d  r o u t i n e  is  remote f r o m  t h e  
c a l l e r ,  i f  t h e  c a l l e d  m o d u l e ' s  processor f a i l s ,  t h e  c a l l i n g  
m o d u l e  w i l l  be s u s p e n d e d  i n d e f i n i t e l y .  T h e  s e m a n t i c s  w o u l d  
t h u s  b e  ( i . n c o r r e c t l y )  d i f f e r e n t  i n  t h e  d i s t r i b u t e d  
e n v i r o n m e n t .  S e m a n t i c  i n t e g r i t y ,  i n  t h i s  case, means  t h a t  
t h e  c a l l e r  m u s t  n o t  b e  allowed to  p e r m a n e n t l y  s u s p e n d ,  s i n c e  
t h e  s e m a n t i c s  o f  a c a l l  d o  n o t  i n c l u d e  t h a t  s i t u a t i o n .  
( O b v i o u s l y ,  i f  t h e  c a l l e d  r o u t i n e  i s  d e s i g n e d  t o  n e v e r  
c o m p l e t e ,  d u e  f o r  e x a m p l e  t o  a n  i n f i n i t e  loop, t h e n  t h e  
c a l l e r  w i l l  n e v e r  resume. However,  t h a t  i s  n o t  a r e s u l t  of  
t h e  s e m a n t i c s  o f  a s u b r o u t i n e  c a l l . )  S i m i l a r l y ,  i f  t h e  
p r o c e s s o r ( s )  e x e c u t i n g  o u t e r - l e v e l  u n i t s  i n  a n e s t e d  
s t r u c t u r e  f a i l ,  t h e  i n n e r - l e v e l  u n i t s  m u s t  n o t  b e  a l lowed to  
p r o c e e d  n o r m a l l y  s i n c e  t h e y  depend o n  t h e  o u t e r - l e v e l  scopes 
f o r  t h e i r  e x e c u t i o n  c o n t e x t .  T h i s  is,  a g a i n ,  a n  i s s u e  t h a t  
may b e  p a r t i a l l y  a d d r e s s e d  b y  t h e  d i s t r i b u t i o n  s c h e m e ,  b v  
c o n s t r a i n i n g  t h e  u n i t s  t h a t  may b e  d i s t r i b u t e d  t o  t h o s e  a c  
t h e  o u t e r - l e v e l .  

Resource Manaaement 

A more o b v i o u s  i s sue  t h a n  t h o s e  a b o v e  is t h e  manaqcment  
of resources. T h e s e  r e s o u r c e s  i n c l u d e  s t o r a g e ,  p r o c e s s o r s ,  
a n d  i n f o r m a t i o n  ( a m o n g  o t h e r s ,  s u c h  a s  d e v i c e h ) .  
S p e c i f i c a l l y ,  s t o r a g e  management  i n v o l v e s  d y n a m i c ,  s t a t i c  
and  t e m p o r a r y  d a t a ,  a s  w e l l  a s  t h e  management  of c o d e  ( w h i c h  
may a l s o  b e  d y n a m i c ) .  
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P roces sor management involves dispatching potent i a1 ly 
remote processors to processes, as well as scheduling, which 
determines the units that are to be able to execute at a 
given moment. Both are, of course, requirements of the RTSE. 

Information management involves the maintenance Of 
consistent, current status information regarding individual 
modules' contexts, processing status and workloads, the 
global program state for each executing program, descriptive 
information about data and code, and so on. 

Different languages have varying degrees of resource 
management requirements, as well as varying degrees of 
programmer-level control over them. Thus the amount of RTSE 
support required varies. For instance, languages which allow 
the allocation and deallocation of dynamic objects from a 
heap will require different RTSE support from those 
languages which have no such capabilities (often 
intentionally, such as in HAL/S). Some languages have only 
static data, and thus require different storage management 
techniques that those which are stack-oriented. In a 
distributed context, where heaps may be effectively 
distributed and/or shared, the management of dynamic objects 
Will require specialized RTSE capabilites. 

ISA Homogeneity 

The Instruction Set Architectures (ISA) of the 
processors that comprise the target environment are also an 
issue. If these processors are potentially heterogeneous, 
target dependencies become a problem. One such dependency is 
of course impjicit in the object code itself, since the 
machine code was generated for a particular ISA. A l s o ,  the 
source C O ~ ?  may contain explicit target dependencies. These 
could include references to absolute addresses and specific 
devices, a s  well as  specific data representation requests, 
and so on. 

Furthermore, the defdult representation of data may 
vary among I S A ' s  with different capabilities. T h i s  
difference in representation will be a problem when objects 
are visible to (two or more) remote modules on non- 
homogeneous ISAs, as well as when objects are passed as 
parameters between such modules. 

Changes In Situ 

I n  systems which are intended to have a very long, 
evolving life-span, such as Space Station, changes to the 
software are inevitable. These changes will occur as a 

B.3.4.6 



r e s u l t  o f  u p g r a d e s  i n  t e c h n o l o g y ,  a n d  a s  a r e s u l t  O f  
chang ing  r e q u i r e m e n t s  i n  f u n c t i o n a l i t y .  T h e  d e s i g n  of t h e  
s o f t w a r e  m u s t ,  i n  i t s  i n i t i a l  fo rm,  p r o v i d e  fo r  s u c h  
changes .  ( A l t e r a t i o n s  t o  t h e  d e s i g n  a f t e r - t h e - f a c t  present a 
m u c h  more d i f f i c u l t  s i t u a t i o n . )  C u r r e n t l y  a c c e p t e d  
c o m p l e x i t y - c o n t r o l  m e t h o d s  o f  m o d u l a r i t y  and  i n f o r m a t i o n  
h i d i n g ,  a l o n g  w i t h  t h e  r e q u i r e m e n t  f o r  chang ing  a sys t em 
w i t h o u t  f i r s t  h a l t i n g  t h a t  s y s t e m ,  d i c t a t e  t h a t  s e p a r a t e  
p r o g r a m s  be employed i n  t h e  c o n s t r u c t i o n  o f  t h e  s o f t w a r e .  
Each program is to  b e  d i s t r i b u t e d  as  n e c e s s a r y ,  o r  n o t  a t  
a l l .  T h i s  approach  is i n  c o n t r a s t  to  one  i n  w h i c h  a s i n g l e ,  
m o n o l i t h i c  program is d i s t r i b u t e d  a c r o s s  t h e  n e t w o r k ( s 1 .  

Q 

I s s u e s  in D i s t r i b u t i n g  Ada Programs h Program E n t i t i e s  

J u s t i f i c a t i o n  for S e l e c t i n g  Ada 

P r o v a b l y  Correct C o n s t r u c t s  

O lde r  HOLs were d e s i g n e d  i n  an e r a  o f  s i n g l e  m o n o l i t h i c  
p r o c e s s o r s  t h a t  were t y p i c a l l y  e x p e c t e d  to  e x e c u t e  programs 
t h a t  w e r e  s m a l l  ( b y  c u r r e n t  s t a n d a r d s ) ,  and t h a t  w e r e  
deve loped  by one programmer. T h e  t h r e e  o l d e s t  h i g h  o r d e r  
l a n g u a g e s ,  F O R T R A N ,  L I S P ,  and  COBOL,  were d e v e l o p e d  ( i n  
1 9 5 7 ,  1958 ,  and 1 9 5 9 ,  r e s p e c t i v e l y )  b e f o r e  t h e  deve lopmen t  
a n d  w i d e  r e c o g n i t i o n  o f  t h e  c o n c e p t s  o f  b u i l d i n g  
" s t r u c t u r e d "  s o f t w a r e  from a s m a l l  set of  p r o v a b l y  c o r r e c t  
c o n s t r u c t s .  T h u s  i t  i s  u n d e r s t a n d a b l e  t h a t  n a t u r a l  
r e e n f o r c e m e n t  f o r  c o n s i s t e n t  use o f  s u c h  c o n s t r u c t s  i s  
l a c k i n g .  I n  f a c t ,  those who u s e  e a r l y  l a n g u a g e s  i n  b u i l d i n g  
s o l u t i o n  models  for many of t o d a y ' s  complex  problems often 
f i n d  t h e m s e l v e s  p e n a l i z e d  for such  u s e .  I n  c o n t r a s t ,  t h e  Ada 
l anguage  p r o v i d e s  d i r e c t  s u p p o r t  f o r  d e v e l o p i n g  s o l u t i o n s  t o  
l a r g e ,  c o m p l e x  p r o b l e m s  t h a t  a r e  d e m o n s t r a b l y  c o r r e c t ,  
ma i n  t a  i n a b l e  and a d a p t a b l e .  

S u p p o r t  for P a r a l l e l  A c t i v i t i e s  w i t h  F a u l t  T o l e r a n c e  

These  e a r l y  l a n g u a g e s  a r e  c a l l e d  s e q u e n t i a l  b e c a u s e  
t h e y  h a v e  n o  s u p p o r t  f o r  mode l l ing  c o n c u r r e n t  o r  p a r a l l e l  
a c t i o n s .  A d d i t i o n a l l y ,  t h e y  p r o v i d e  s u p p o r t  for n o r m a l  
p r o c e s s i n g  o n l y ,  w i t h  n o  means f o r  e x p r e s s i n g  t h e  r e s p o n s e  
t o  run - t ime  e r r o r s .  Again,  T h e  Ada l anguage  p r o v i d e s  d i r e c t  
s u p p o r t  f o r  s u c h  a c t i v i t i e s .  T o  d i s t o r t  t h e  s o l u t i o n  model 
w i t h  s u c h  a l a n g u a g e  a s  F O R T R A N  o r  P a s c a l  would  r e q u i r e  
e x t e n s i v e  p rogramming  i n  a s s e m b l y  l a n g u a g e  and  u s e  of 
o p e r a t i n g  s y s t e m  c a l l s  i n  o r d e r  t o  c o m p e n s a t e  f o r  t h e  
i n a d e q u a c i e s  of t h e  language .  T h e  r e s u l t i n g  s o f t w a r e  s y s t e m  
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would b e  too expensive to build, much more difficult to 
maintain and operate, and far more difficult to adapt to 
changing requirements, Similarly, to distort the solution 
model by failing to support distributed program entities, as 
Well as distributed programs (when appropriate), would be to 
add rather that to reduce complexity, since the resulting 
model would be far less representative of the problem. 

D i 8  tr ibu tion Scheme 

The central theme in the following discussion is that 
Of the distribution scheme. As demonstrated, its control 
over visibility has a considerable impact on the complexity 
Of the underlying RTSE, and thus the feasibility of 
distribution. In Ada, the spectrum of distribution begins 
with constants and variables, continues to nested program 
units (blocks, Subprograms, packages and tasks), and ends at 
the other extreme of compilation units. (It should be noted 
that Ada provides greater control over the name space via 
packages.) Compilations units in this case would be Ada's 
"library units": specifically, subprograms and packages. At 
this level, the only visible entities are these library 
units, parameters for these units when they are subprograms, 
and declarations in the visible parts of library unit 
packages. Distribution at this level is the easiest to 
support. Distribution at the nested program unit wouid limit 
some visibility, (i.e., the declarations local to nested 
units), but not globally visible data and routines. Thus it 
would not result in less RTSE complexity. Obviously, the 
simpler the requirements for the RTSE the better, since the 
implementation of distribution support is simpler. 

However, other factors besides RTSE complexity must be 
considered in the choice of distribution level support. 
Specifically, the amount of fault-tolerance required must b e  
seriously considered. If little fault-tolerance is required, 
the system may be allowed to deal with it transparently ( i n  
very deterministic ways), such that the programmer is not 
directly involved with the response to failures. A s  such, 
the programmer has n o  need to e x p r e s s  a s p e c t s  of 
distribution dynamically in the source language. However, in 
some applications only the programmer can know what is to be  
done in response to failures. The appropriate response may 
be a specific reconfiguration of the program units involved. 
Since the only dynamic program unit is the task, the 
distribution scheme may have to support distribution of 
tasks in order for the programmer to s p e c i f y  the 
reconf igur a t ion. 

0 . 3 . 4 . 8  



The concept of time in Ada may be expressed explicitly 
in several ways, based on the delay statement. An example of 
the need for consistency across remote units is, of course 
the timed entry call, which requests a service to be 
provided to the caller in a specific amount of time. If the 
server is to respond meaningfully, it must perform the 
request for rendezvous in the amount of time indicated by 
the call. However, since the clocks of the two processors 
w i l l  n o t  b e  synchronized, and there will b e  an 
indeterminable communication lag, difficulties will exist. 
Specifically, the server may respond too late, such that the 
caller will have timed-out and continued on as if the 
service was never provided. If not handled by the RTSE, the 
program would then be in a logically inconsistent state. 

An example of timing issues in the underlying RTSE is 
the activation of remote tasks. The parent task must not 
begin execution until all tasks declared in its declarative 
region are successfully activated. If one or more of these 
activations fail, then Tasking Error must be raised in the 
parent. 2 

- 

Another example is the elaboration of the library units 
named in the context clauses of a main (sub)program. These 
must be elaborated in an order that is consistent with the 
transitive dependencies. As a result, distributed library 
units cannot simply be elaborated when the remote host site 
is ready. Rather, there must be communication and 
cooperation among the sites. 

Semantic Integrity 

Ada subprogram calls will exhibit the behavior 
described under the general section on "Semantic Integrity" 
with respect to failure of the called unit (i.e., they too 
will not return). Furthermore, an entry call will exhibit 
those same characteristics when the processor supporting the 
called entry fails. Conditional and timed entry calls can 
protect the caller from permanent suspension prior to the 
start of the rendezvous. However, these calls do not protect 
the caller once the rendezvous has begun. - 

Note that in a distributed context, the activation 
status messages may be lost. The resulting indefinite 
suspension of the parent would be an example of failed 
semantic integrity. 
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It should be noted that in a distributed execution 
environment, the conditional entry call is not the same as a 
timed entry call with a zero delay. The reason is as 
follows. In the Language Reference Manual (LRM)3, the phrase 
"immediately possible" in the discussion of the conditional 
entry call refers to the readiness of the called task to 
accept the call, (not to an amount of time). The conditional 
caller is dependent upon the called task to indicate whether 
or not it can accept the call. If not, the caller will 
resume under the "else" part of the call. If the called task 
indicated that it could perform the rendezvous (resulting in 
the caller being suspecded), and then failed, the caller 
would be indefinitely suspended (unless fault tolerant 
programming techniques are applied). This is not the case 
with a timed entry call. Under a timed call, the caller is 
not dependent on the called task. (The caller does the 
timing.) If the call is not performed in the specified 
delay, then the caller continues on, without reqard for the 

- 

statbs of the called task. Thus, the semantics-are not the 
same. 

- 

Resource Management 

0 Distributed Ada will require all the resource 
management activities outlined in- the general section on 
resource management, and specifically those for a stack- 
oriented language. One aspect that has received attention is 
the subject of dynamic data, supported in Ada by the "access 
type". Some implementations of distributed Ada restrict 
parameters such that values of access types are not passed 
between remote program units.4 This is an expedient 
approach, but not an absolutely necessary one. In Ada, 
dynamic objects are referenced as abstractions, which is why 
they are called "access" types rather than "pointer" types. 
The value gives "access" to the dynamically allocated 
object. This is of course typically implemented (on 
uniprocessors) as an actual address. The common reaction to 
distributing access types is then that such distribution is 
not possible. However, in keeping with the abstraction 
concept, in passing an access value to a remote site, rather 
than passing an address which will be meaningless to the 
remote site, a ''token" should be passed which uniquely 
identifies the dynamic object. The identifier will have to 

Ada Language Reference Manual, ANSI Mil-Std-l815A, 

A Feasibility Study to Determine the Applicability of 
Ada and APSE in a Multi-microprocessor Distributed 
Environment (Final Report, March, 1983) TXT, C I S E ,  SPL 

Section 9 .7 .2  
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be u n i q u e  o v e r  t h e  e n t i r e  t a r g e t  env i ronmen t ,  and may b e  
p a s s e d  a t  w i l l  among d i s t r i b u t e d  u n i t s .  

I S A  Homogeneity 

Ada p r o g r a m s  w i l l  h a v e  t h e  same p r o b l e m s  of d a t a  
r e p r e s e n t a t i o n  t h a t  a n y  HOL p r o g r a m  w o u l d ,  when t h e  
p r o c e s s o r s  c o m p r i s i n g  t h e  t a r g e t  e n v i r o n m e n t  a r e  
h e t e r o g e n e o u s .  These  problems w i l l  be e x h i b i t e d  when g l o b a l  
o b j e c t s  a r e  r e f e r e n c e d  by two or more remote program u n i t s  
on d i f f e r e n t  I S A s ,  and when p a r a m e t e r s  a r e  p a s s e d  b e t w e e n  
s u c h  p r o g r a m  u n i t s  v i a  s u b p r o g r a m  and  e n t r y  c a l l s .  The  
s p e c i f i c  i n c a r n a t i o n  o f  t h e  p r o b l e m  is  p a c k a g e  S t a n d a r d ,  
w h i c h  l o g i c a l l y  enc loses  t h e  u n i t s  compr i s ing  a program.  
( P a c k a g e  S y s t e m  i s  a l s o  a p r o b l e m  t o  a l e s s e r  e x t e n t . )  
Package  S t a n d a r d  d e f i n e s  t y p e  I n t e g e r ,  F l o a t ,  C h a r a c t e r  and 
so o n ,  f o r  a n  e n t i r e  p r o g r a m .  The  q u e s t i o n  t h e n  i s  h o w  
d i f f e r e n t  I S A s  c a n  e f f i c i e n t l y  r e p r e s e n t  t h o s e  common t y p e s .  

O n e  a p p r o a c h  i s  t o  r e s o r t ,  i n  - a l l  c a s e s ,  t o  
r e p r e s e n t i n g  p a s s e d  d a t a  a t  t h e  l e v e l  o f  t h e  c o m m o n  
d e n o m i n a t o r :  t y p e  S t r i n g .  T h i s  is c o n s i d e r e d  too e x t r e m e ,  
s i n c e  n o t  a l l  c o m m u n i c a t i n g  p r o g r a m  u n i t s  w i l l  b e  o n  
h e t e r o g e n e o u s  p r o c e s s o r s .  However, t h e  c o n c e p t  of  a common 
f o r m a t ,  a " c a n o n i c a l  d a t a  fo rma t" ,  may b e  t h e  most e x p e d i e n t  
approach .  A promis ing  a l t e r n a t i v e  is t h e  c o n c e p t  of " s e l f -  
d e f i n i n g  d a t a  s t r u c t u r e s " ,  i n  which t h e  p a s s e d  d a t a  i n c l u d e s  
a d e s c r i p t i o n  of i t s  r e p r e s e n t a t i o n .  

Changes I n  S i t u  

A s  s t a t e d  i n  t h e  g e n e r a l  s e c t i o n ,  c h a n g e s  t o  t h e  
s o f t w a r e  i n  a s y s t e m  w i t h  an  l o n g ,  e v o l v i n g  l i f e  c y c l e  w i l l  
be r e q u i r e d .  I t  may o f t e n  b e  t h e  c a s e  o n  Space  S t a t i o n  t ! ia t  
t h e  s u b s y s t e m  b e i n g  c h a n g e d  i s  c r i t i c a l  and  c a n n o t  b e  
s t o p p e d  i n  o r d e r  f o r  t h e  changes  t o  be i n s t a l l e d .  A l s o ,  good 
d e s i g n ,  m a i n t e n a n c e  a s p e c t s ,  a n d  t h e  s h e e r  v o l u m e  o f  
s o f t w a r e  i n v o l v e d  m a n d a t e s  t h a t  m u l t i p l e  Ada programs b e  
u t i l i z e d  i n  t h e  c o n s t r u c t i o n  of  t h e  s o f t w a r e  sys t em.  T h i s  i s  
n o t  i n  c o n f l i c t  w i t h  t h e  L R M ,  a l t h o u g h  a c a s u a l  r e a d i n g  
might  imply t h a t  t h e  LRM r e q u i r e s  o n l y  one program t o  b e  " i n  
ex is tence"  a t  a time. Nothing i n  t h e  LRM h a s  been  f o u n d  t o  
r e q u i r e  s u c h  a r e s t r i c t i o n . 5  

E a c h  program would be  d i s t r i b u t e d  i f  t h e  r e q u i r e m e n t s  
d i c t a t e d  t h a t  approach .  Each would b e  o n l y  a s  d i s t r i b u t e d  a s  

The i s s u e  of multiprogramming i s  ( a p p r o p r i a t e l y )  n o t  
a d d r e s s e d  i n  t h e  l anguage  r e f e r e n c e  manual.  
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necessary, t o  reduce the costs o f  distribution Support. 
Furthermore, if t h e  RTSE is constructed in a l a y e r e d ,  
modular fashion, those programs not requiring distribution 
support would not pay an overhead penalty since the RTSE 
would b e  configured to the minimum support necessary. A non- 
distributed program would then be supported by a traditional 
configuration of runtime support services. 

Although the details of supporting the integration of a 
new subsystem without first stopping that subsystem are not 
clear, it is felt that such an activity is impossible i f  
separate programs are not employed. 

Conclusion 

A s  s h o w n ,  rrany o f  the issue- i.1 distributing Ada 
programs are common to distributing any high-order lancuage. 
T h e  3 i s t r i b u t i o n  schenle, because of its impact on the 
underlying RTSE complexity, should be carefully chosen when 
implementing distribution of the language. i n  making the 
choice, special consideration must be given to the amount of 
f a u l t - t o l e r a n c e  required, and the level of programmer 
response. In Space Station, such issues will be critical. 
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1. Introduction 

A distributed Ada(r )  Program Support Environment (APSE) t one in which programmers, 
managers, customers, testers, etc., may work on deparate comkute:s, linked by a high-speed 
network. I t  also may imply that program development proceeds in a series of relatively 
independent  subsystems, which are then combined into larger A d a  programs as p a t  of final 
integration. (This  reminds one  of the frequent similarity between the structure of programs 
and the structure of the organizations that build them.) 

This paper will discuss an approach to the implementation of a distributed APSE which provides 
for parallel development on separate cornputen while sharing "cat.alogs" of compiled units, b u t  
avoiding global locking o r  naming bottlenecks. 

2. T h e  A& Pmgrarn Library 

Ada a a language is somewhat unusual in that a "program Iii-ary" must  be maintained across 
separate compilations, holding compiler- produced information necessary not only for later 
linking, but  also for later compilations. To support a distributed APSE, it is essential that the 
A d a  program library may itself be "distributed," because it is too expensive in disk space andior  
compile-time to maintain on each computer a copy of the entire program library. 

Even on  a single computer, there are r p u o n s  to "distribute" the A d a  program library. A s  
defined in the Ada. Reference Manual ( A R M  10.4) the program library holds the "universe" of 
compilation units available for "WITH" references at compile time, and for eventual linking into 
an A d a  program. Conceptually a t  least, the library includes all the language-defined packages, 
such ia TEXTJO, CALENDAR, e k .  There by themselves represent a major investment  in  
compile-time and disk space, and most Ada  compilation systems have devised some way to 
sharp such compiled packages across program libraries. 

2.1 Program Library an Network of Cabloga 

As a generalization o f  sharing language-defined compiled packages, we have defirled a 

conceptual Ada  program library as a net of  interconnected "catalogs," some o f  which may be 
connected into o t h e r  prograrir libraries as well. Each catalog holds a s e t  of (compiled) 
compilation i ini tn  r rprewnbcl  i n  a D I A N A  lorm, .w well a.. a more conventional o h p r t m o d \ l l e  
form.  A conceptual library is constructed from a read/write "primary" ca tdog  plus links to a s e t  
of read only "resource" catalogs. 

Every program library must  provide the language-defined packages, which in our  case are 
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gathered together to form the "RTS" (run-time system) resource catalog. A typical law1 
program might  have a series of other resourcr eatdogs for  utilities, like a DBMS catalog, 
MATH catalog, a DEBUG catalog, etc., plus one catalog for each major subsystem. 

Each resource catalog is actually part of a se t  of revisions. Two revisions may share some ( 1 1  
their compiled unita, and differ in othera. We therefore provide for both sharing of cornpilei: 
units across digerent  program libraries, as well as across revisions of the "same" conceptl1;l: 
program library. .- 

3. T h c H I F  

To support  this distributed program library structure in a host independent way, we have 
defined a standard Host Interface (HIF) to a (distributed) database system. The Hif database is 
organired as a s e t  of "nodes", partitioned by "Hif user' (where a Hif user maps to a user or  
sub-project on  the Host system). There is a "top-level node" associed with each Hif user, 
analogous to the "home directory" of a conventional file system. 

Hif nodes have string-valued at t r ibukr ,  and relationships from one node to another. The 
relationships are uni-directional, meaning that they can be viewed as directed arcs in a graph of 
nodes. A subset  of the relationships, called the "primary" relationships, form a strict tree 
reaching every ( n o n  top-level) node by exactly one path. The "secondary" relationships forri 
an arbitrary graph. 

5.1 H I F  Node Kinds snd  Partitions 

Two kinds of HIF nodes exist: structural and file. File nodes have a host  file associated with 
them (typically containing the DIANA o r  OBJMOD representation of an Ada compilation 
uni t ) ,  while structural nodes serve only as connectors between other  nodes, and as carriers of 
attributes. 

The subtree of nodes beneath the top-level node associated with each H I F  user, plus all of the 
host files associated with these nodes form a partition of the HIF database. The information 
necessary to represent a user's partition is gathered into a single host directory. The n o d e -  
structure database is represented by 3 files: a B t r e e  of nodes, a hash-table o f  
relation/key/attribute identifiers, and  a heap of attribute values. The file-node host files are 
assigned HIF-generated names i n  the host directory. 

3.2 Program Librsry Implementation via the IIif 

The program library is implemented using Hif nodes, taking advantage of the partitioning by 
/{if  user. The s e t  of revisiuns o f  a resource catalog, plus all of the conipiled u n i b  included irl 
o n e  or  more of the revisions, are comhined into a singlc Hif partition. 

In  addition, some number o f  primary catmlogs may coexist in the same Hif partition. In 
particular, the primary catalog used to create the next revision o f  the resource catalog must  be 
ir i  this same partition. 

I t  is posfiihle to put  more than one resource catalog revision s e t  in a single I l i f  partition. 
t[owcvcr, maximum flexibility o f  tlistrihotinn results from defining B separate Hif user Tor each 
r e s o u r r e .  Separate partition? for testiriK l ic lp further, by keeping the resource partitions free o f  
test stubs and drivers. 
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4. Unique Identiflerr 

G i v e n  M Ada program library dis t r ibuted u n o n g  primary and resource catalogs,  and  a H i f  
database diatr ibuted a m o n g  partitions, a n u m b e r  of interest ing technical  p r o b l e m s  arise in the 
a r e a  of u n i q u e  naming.  

U n i q u e  ident i f iers  are n e e d e d  for cornpilation u n i t  revisions to correct ly  d e t e r m i n e  when a 
compi la t ion  u n i t  g o e s  out-of-date. T h e  compi le r  m u s t  record the uniqlle identifier o f  all 
compi la t ion  u n i t  revir ions referenced while compil ing the uni t  (e.g. the  "W1TH"ed s p e c s ) ,  and 
t h e n  w h e n  these  a re  replaced in t h e  (conceptual)  program library, the u n i t  m u s t  appear  o u b o f -  
date .  

U n i q u e  identifiers are also needed  for subproBrams,  so tha t  references at calls rnay  
to t h e  appropriate  body.  Overloading m e a n s  a simple s t r ing will n o t  suffice. 

Finally, u n i q u e  ident i f ien  are needed  for each  A d a  type, so t h a t  s t r o n g  type checking  and  
over load  analysis m a y  be per formed correctly. L o n g  identifiers and  potentially d e e p  nes t ing  
m a k r  the fu l l  A d a  n a m e  an  inappropriate choice. 

r * . ~ ~ ~ l i c t l  

In  each  case it is desirable tha t  the unique identifier be relatively s h o r t  ( e +  32 o r  84 bits) s ince 
there  are a very  large n u m b e r  of references,  m d  y e t  be distinguishable f rom all o t h e r  identifiers 
in the diatr ibuted program library. This  is made m o r e  difficult when compi l ing  is proceeding  
independent ly  o n  separate  computers ,  presuming there  is n o  central ized assigner  of globally 
u n i q u e  identifiers. 

4.1 Contur tdependent  Unique Identiflerr 

W e  have  so lved  each of these unique identifier problems by using the c o n c e p t  of c o n t e x b  
d e p e n d e n t  identifiers, with c o n k x t d e p e n d e n t  translation per formed a3 par t  of moving  t h e  
identifier f rom o n e  c o n t e x t  to the next .  

4.2 Node I&,  Partition I&,  and Partition Map.  

T o  uniquely identify compilat ion uni t  reviaions in the dis t r ibuted A d a  program library, we rely 
o n  the genera l  Hif node identifier, which consists of two integers ,  a "partition" id, and  a nodt ,  
id. T h e  partition id is s imply an index into a "partition map,"  select ing an  e n t r y  which idrnt i f ics  
the locat ion of the  h o s t  files represent ing the partition within the host file s y s t e m ,  as wel l  ;IZ 

which partition m a p  (if different  f rom this  one) to use for interpret ing partition-ids appearing 
within t h a t  partition. T h e  node-id is used aa a key into the B t r e e  ( h o s t )  file which represents  
the  par t i t ion,  and is aasigned sequent ia l ly  within the partition an nodes  are created.  

Each c o m p u t e r  can maintain ita own partition m a p  relatively independent ly ,  ass igning its own 
part i t ion ids. W h e n  a reference is created to a partition o n  a n o t h e r  c o m p u t e r  t h a t  is not  yet  i n  
the  par t i t ion m a p ,  a partition-id is ansigned for use from the  referencing c o m p u t e r .  T h e  en t ry  
in t h e  partition m a p  indicates the location of the partition, as well M the locat ion o f  the 
partition m a p  to he used to in te rpre t  its partition references.  W h e n  a node  reference 
(par t i t ion- id ,  node-id pair) is copied f r o m  a partition o n  o n e  c o m p u t e r  to a partition o n  the 
o t h e r  c o m p u t e r ,  the partition-id is translated according to the  corr t ispondence be tween t t i r  

partition maps o n  the two cornpiiklrs. 
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4.2.1 Ezporfing Parfikbnr and Partilion Map8 T h e  puti t ion map mechanism makes f o r  a 
convenient  method for exporting a ret of put i t ions on  tape, by simply including the partition 
map on the tape. Then ,  when the puti t ions .n read . a& in off the  tape, so is the partition 
map. The partitions are entered into the 5nuterm puti t ion map on the receiving computer ,  and 
their entry in the partition map indicates that when interpreting partition references within 
them, t6 use the  partition map also copied from tape. 

For convenieiice, a partition doer - o t  embed itr own partition id in self-references, but  rather 
user the  special partition-id aero. This way, if the partition is totally self-contained, there is n o  
need to ship the partition map when shipping the partition all by itself. 

4.8 Unique A&-Entity Idcntifierr 

A second kind of unique identifier, an Ada-entity idenlifier, mus t  specify a particular Diana 
node, which represenb the entity, among all of  the Diana nodes in all of the compilation units 
in the (distributed) program library. Nevertheless, since there are many thousands o f  such 
references in a large program, the node identifiers ("locators") mus t  be kept M small as possible 
(e.g. 32 b i b ) .  This apparently conflicting set  of  requirements was resolved by making each 
Diana  file its own context for interpreting the locators. 

4.3.1 Diana Node Locaton; Scqmcnt + Offact Node locators are broken up  into two halves, 
16-bits of segment  index, and 16-bib of segment o8set. When the segment  index is positive, it 
u an intrkfile reference, and the segment  index simply selects in which 64K segment  of the file 
the Diana node appears. The segment offset always gives the byte offset within segment. a 

0 

When the segment  index is negative, it hp an inter-file reference, and the absolute value o f  the 
segment  index selecb the element  in  the Diana file's "external segment  definition table" which 
identifies (with a Hif relationship) the compilation unit being referenced, and the segment  
within it. 

This mechanism allows each compilation unit to refer to 32K other compilation unit segments, 
each of which is up to 64K bytes in length. However, it means that a locator must  always be 
interpreted relative to the file i n  which it resides. To simplify the manipulation of locators by  
the compiler, a "master" segment definition table is deGned, and all locators are translated to 
"master" locators as they are retrieved from a Diana file. By design, the master segment  
definition table becomes the external segment  definition table for the Diana file being created at 
that time, meaning that n o  additional locator translation need be d o n e  o n  storing i n t o  the file 
being created. 

5 .  Summary a n d  Expericnw 

A distributed A d a  program library is a k e y  e lement  in  a distributed APSE. To impleulent this 
successfully, the program library "universe" an deGned by the Ada Reference Manual must  he 
broken up into independently manageable piecen. This in turn requires the support  of a 
distributed databaqe system, a.9 well M a mechanism for  uniquely identifying compilation units. 
linkable subprograms, and Ada types in a decentralired way, to av falling victim to the 
hottleriecks o f  a global datahaw and/or global unique-idenlifier nanager .  

W e  have found the ability to decentralize Ada program library activity a m a b r  advantage in the 
management  of large Ada programs ( i n  particular, Lhe multi-t.ugcted/iiiulti-hosted . Ida 
compiler itself). We currently have 18 resource-catalog revision sets, each in its own tiif 
I'artition, plus 18 partitions f o r  testing each of these, plus I 1  partitions for the top-level 
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compiler/linkcr/progrun-libru~mrnyer componentr. Compiling and other development work 
CUI proceed in p u d l c l  in each of there putitfonr, without ruffering the performance 
bottleneckr of global lock8 o t  global unique-identifier generation. 
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1 r a n  
ML c 

by 
Smi1 Ruhman and Flavia Rosemberg 
Department of Applied Mathematics 
The Weirmann Institute of Science 

Rehovot , Xsr ae l  

Standardization activity of data comunlcation in avionic systems 
StartaY In 1968 L# m?Irapadt of -1 system -sum d the - d m * - - - m -  
w m b ~ ~  sufi-assemlfffcs. ffrsr issued in r m ,  m - m - r 5 5 3  (DSAF) 
replaced point-to-point wiring w l t h  a digital time-multiplexed 
cammon-bus for serial data trarmmlsslm. Reissued fn 1975 as a 
tri-service standard (version A) and again revised in 1978 
(version B), it came into wide use and is supported by integrated 
hardware. However a major development effort must still be invested 
in e v e y  real-time sy*sterr for interprocessor synchronizaticjn and 
scheduling of information transfer in the absence of a high-level 
language possessing communication constructs. 

The growing complexity of avionic systems is straining the 
capabilities of MIL-ST!!-lS53 B, but a much greater challenge 
to it is posed by Ada, the standard language adopted by the 
US Department of Defense for real-time, computer-embedded-systems. 
The stochastic, distributed nature of Ada with its 
rendez vous protocol for interprocess synchronization is not 
matched well by the deterministic central control of 
ommunication in MIL-STD-lSSJ 8 .  Accordingly, the authors & ave proposed hardware implementation of Ada communication 

protocols in a contention/token bus or token ring network (1). 

command/response multiplex data bus is still flourishing and 
the development environment for distributed multi-covuter 

of the standard language with the standard bus could be very 
useful and even highly desirable. By concentrating all status 
information and decisions at the Bus Controller, it was found 
possible to construct an elegant and efficient hardware 
implementation of the Ada protocols at the bus interface. and 
this solution is the subject of our paper. No compromises are 
taken with the bus standard, and no changes imposed on Remote 
Terminals. Implementation hardware is restricted to the 
B u s  Controller and its alternate. the B u s  Monitor. 

However, during the transition period when the current 

M a  sys- js a§ ye t  Im8ng ,  B t4myWrsw iieX&#Kd&CPrn 

The idea is based on polling of the Remote Terminals 
by the Controller for entry calls, accept statements, 
or results (output parameters). The Controller interface 
maintains all the entry call queues and the list of ready 
accept statements, searches for a match, and issues the 
appropriate commands for transfer or execution depending 
on the presence of input and/or output parameters. In 
addition, the Controller interface times the delays 
of selective waits and of timed entry cails, and controls 
-he execution of delay alternatives and of "else" clauses 
lost of these operations are clearly of a match-making or 
associative nature. To avoid long Controller response 

s 
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times due to conventional searching of extensive filw, a l l  
queue8 and lists 8ra stored in 8 cooamon associative memory 
which As microsequenced from a control store. 
presents the algorithms en$loytxl, defines the cormnand and data 
tonnats, and outlines the hardware organization. The resulting 
bus traffic and speed of operation are discussed. 
to note tha t  while our algorithms take advantage of m o d e  
Co!mands to reduce traffic, no such use was found for broadcast 
cormnands . 

The paper 

It is interesting 

The proposed approach renders distributed intertask 
synchronization transparent to the designer and inplements it 
in hardware at the bus interface. In addition, data buffering 
becomes unnecessary, since transfer is delayed until both 
parties are ready. Many important advantages result, chief 
among them being: facilitation of the development environment: 
major savings in specific development effort; conservation of 
system resources such as host processing and line transmission 
capacity; and faster system response. 

Reference : 

(1) Rosemberg, F. and S. Ruhman, "Hierarchical partitions in cyclic 
closed systems : a hardware oriented approach", Proceedings of 
Computers in Aerospace V Conference, Longbeach. CA. 
October 1985, pp. i48-15s. 
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*Ada i s  a r e g i s t e r e d  t rademark o f  t h e  U.S. Governnent, M a  J o i n t  Program O f f i c e  
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ware E n g i n e e r i n g  f o r  FSD (1977-1979) .  Hr .  O ' N e i l l  
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opment p r o j e c t s .  He has r e c e n t l y  been l e a d i n g  t h e  
a c t i v i t y  t o  p r e p a r e  FSD f o r  Ada use on p r o j e c t s .  

M r .  O ' N e l l l  i s  a member o f  t h e  E x e c u t i v e  Board 
o f  t h e  I E E E  Techn ica l  Committee on So f tware  Engi -  
n e e r i n g .  I n  a d d i t i o n ,  he has been a D i s t i n g u i s h e d  
V i s i t o r  o f  t h e  I E E E  S o c i e t y .  H r .  O ' N e i l l  a l s o  
s e r v e s  as a menber o f  t h e  A I A A  So f tware  Systems 
T e c h n i c a l  Committee. He r e c e i v e d  h i s  BS degree i n  
ma themat i cs  from O ick inson  Co l l ege  i n  C a r l i s l e .  
P e n n s y l v a n i a .  

PREFACE 

Modern s3f;rrare e n g i n e e r i n g  p r a n i s e s  s i g n i f i c a n t  
r e d u c t i o n s  i n  s o f t w a r e  c o s t s  and improvements i n  
s o f t w a r e  q u a l i t y .  The Ada language i s  t h e  focus 
f o r  t hese  s o f t w a r e  methodology and t o o l  improve- 
ments.  The c m m u n i t y  may have underes t ima ted  the  
p r e p a r a t i o n  f o r  M a .  i n c l u d i n g  c o m p i l e r  development 
and e d u c a t i o n .  More must be done. On the o t h e r  
hand, t h e  ccmnuni t y  may have underes t ima ted  t h e  
b e n e f i t s  o f  M a  p r o d u c t i v i t y  and q u a l i t y .  Perhaps 
e x p e c t a t i o n s  shou ld  be r a i s e d .  

So f tware  E n g i n e e r i n g  and Ada f o r  Des iqn  ove r -  
v lews  t h e  IBM FSD S o f  tware  F a c t o r y  approach, In- 
c l u d i n g  t h e  s o f t w a r e  e n g i n e e r i n g  - p r a c t i c e s  t h a t  
g u i d e  t h e  s y s t e m a t i c  d e s i g n  and deve lopnen t  o f  
s o f t w a r e  p r o d u c t s  and t h e  management o f  t h e  s o f t -  
w d r e  p rocess .  The r e v i s e d  Ada destgn language 
a d a p t a t i o n  i s  r e v e a l e d .  This f o u r  l e v e l  d e s l y n  
me thodo logy  i s  d e t a i l e d  --  i n c l u d i n g  t h e  purpose o f  

mwnicur 1916 i v  TUE USOCIATIOII ion c M I m I n a  
IUCUIIILIV. INC. h n l a s l o n  t o  copy rlthout Io. a l l  o r  
p a r t  O K  t h l a  u t e r l a l  1. pranced p r o v l d d  tha t  t h e  
coploa a r a  not mad. or dlstrlbutd Kor dlr-ct 
commorclal adrancaq~. t h o  A U  copyrlqht notlca and tha 
title O K  I h a  publlcatlon a n d  l t a  d a t a  appaar, and 
notlca la q l v a n  that copylnq la by penlaalon of tha 
raaoclatlon t a r  Computlnq Machlnary .  To copy oth.rvl... 
o r  t o  republleh. requ1r .a  K-0 and/or *pecltlc 
p.nla.lon. 

each l e v e l ,  t h e  inanagenent s t r a t e g y  t h a t  i n t e g r a t e s  
t h e  s o f t w a r e  d e s i g n  a c t i v i t y  w i t h  program ! n i l e -  
s tones ,  and t h e  t e c h n i c a l  s t r a t e y y  t h a t  n a p s  thr? 
Ada c o n s t r u c t s  t o  each l e v e l  o f  d e s i g n .  A C G n P l e i C .  
d e s c r i p t i o n  o f  each d e s i g n  l a e l  i s  p r o v i d e d  diol!; 
w i t h  s p e c i f i c  d e s i g n  language r e c o r d i n g  gu ide1  ifierJ 
f o r  each l e v e l .  

F l n a l l y ,  some tes t imony  i s  o f f e r e d  on e d u c a t i o r  , 
t o o l s ,  a r c h i t e c t u r e ,  and m e t r i c s  r e s u l  t i n y  f r v -  
p r o j e c t  use o f  t h e  f o u r  l e v e l  Ada d e s l g n  lan<.JJ. , r  
a d a p t a t i o n .  

S e c t i o n  1 

INTRODUCTION 

S o f t w a r e  may be t h r o t t l  i n g  t h e  i n d u s t r i a l  de, , r l  - 
opnen t  o f  t h e  U n i t e d  S t a t e s .  As t he  i n f o n r j : ! . i - i  
s o c i e t y  takes  h o l d .  t h e  demands f o r  s o f t w a r e  d v r  
i n c r e a s i n g .  Fu r thennore ,  p u b l i c  e x p e c t a t i s i :  'I. 

i n c r e a s i n g  too;  peop le  want s o f t w a r e  t r a t  p r L ' i ;  
t h e  r i g h t  answers on t ime,  e v e r y t i m e ,  anNf o d e \  > 
i n  a u s e r - f r i e n d l y  manner. So f tware  i s  1ntenae.i :.> 

p r o v i d e  f o r  t h e  hannonious c o o p e r a t i o n  among c r ' . ' ;  l i .  
and machines.  People possess an i n f i n i t e  vdri.::, 
and machines do o n l y  what i s  i n s t r u c t e d ,  nut-i!n- 
s t a n d i n g  the  promise o f  a r t i f i c i a l  i n t e i  1 r y e x t . .  
AS a r e s u l t .  t h e  burden on s o f t w a r e  i s  S u S S t d r l ! ' J I  
indeed and i s  i n c r e a s i n g .  

R e c e n t l y ,  s o f t w a r e  e n g i n e e r i n g  has p r o v i o e d  f.ir 
t h e  s y s t e m a t i c  d e s i g n  and deve lopnen t  o f  s o f : - r r c  
p r o d u c t s  and the i i i dnagnen t  o f  t h e  SOfth.!l't' :\I < -  

ess .  The r e s u l t  shou ld  be q u a l i t y  s o f t - d r e  ; * - , z -  
u c t s  o b t a i n e d  th rough  d e s i g n ,  s u s t a i n e d  t n r u ~ , ; b  
deve lop i i en t ,  and iiiofii tored t h r o u g h  t e c h n i c d l  r e -  
v iews .  We have always known t h a t  good p r o j e c t s  d r ?  
ones w i t h  few err0i.s a t  t h e  end. We now knoh t n d t  
good p r o j e c t s  a r e  a l s o  ones w i t h  few e r r o r s  a t  thc 
b e g i n n i n g .  What may be needed now i s  a r e f i n w e n t  
o f  t hese  methods, e s p e c i a l l y  i n  the  r e q u i r e : : r ' r i t j  
and s p e c i f i c a t i o n  areds,  t h e i r  broad dpp l  i c d t i o n ,  
and p r e p d r a t i o n  of  adequate t o o l s  t h d t  r e - e n f c r c e  
and en fo rce  t h e i r  use w h i l e  a s s i s t i n g  i n  p r o d J c t r i -  
i t y  g a i n s .  

S e c t i o n  2 

SOFTWARE E N C I N C E R I N C  f A C T O R Y  

Sof tware e n g i n e e r i n g  p r o v i d e s  f o r  t h e  s y s t e n a t i c  
d e s i g n  and developi i icnt  o f  s o f t w a r e  p r o d u c t s  and t h e  
management o f  t h c  s o f t w a r e  p rocess .  S o f t w d r e  
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eng ineer ing  may be viewed i n  the form o f  a s t a t e  
machine c a p o s e d  o f  Inputs,  t r a n s i t i o n s ,  outputs,  

The Inpu.ts to the process i nc lude  the q u a l l f l e d  
people, l a b o r  saving too l s ,  and p r a c t l c a l  technol?- 
gy needed t o  app ly  modern design, developnent, and 
management p r a c t i c e s  i n  the  p roduc t i on  of  usab le  
and reusab le  so f tware  products o f  s u f f l c l e n t l y  h i g h  
q u a l i t y  t o  ensure l i f e  c y c l e  b e n e f i t s  and con f iden t  
customer ownership. People today a r e  requ i red  t o  
be highly q u a l l f l e d  and equipped wi th spec ia l i zed  
t r a i n i n g  I n  both software technoloyy and app l lca-  
t i o n s .  Testimony fran e a r l y  Ada users i nd i ca tes  
t h a t  the t r a i n l n g  needs may be subs tan t i a l .  Har lan 
M i l l s  observed t h a t  as we shape our too ls ,  wr 
t o o l s  may l a t e r  shape us. Too ls  represent  an 
I n s t l  t u t i o n a l l r e d  exper t  s y s t m .  knowledge base o f  
so f tware  methodology and s t y l e .  Tool investments 
o f t e n  l a g  behind t h e i r  need. P r a c t l c a l  technology 
r e q u i r e s  the a p p l i c a t i o n  o f  bas ic  p r i n c i p l e s  fron 
advanced technologies repackaged i n t o  i n t u i t i v e  
approaches and s i m p l i f i e d  f o r  use by i ndus t r y  
p r a c t i t i o n e r s  and acceptance by customers. lech-  
no logy  must employ an understandable Conceptual 
model t o  a s s i s t  the t r a n s i t i o n  fran user need t o  
usable product.  

The t r a n s l t i o n s  o f  the  software engineer ing 
s t a t e  machine are  governed by the software engl-  
neer ing  p r a c t i c e s  f o r  design, development, and 
management. app ly ing  across the f u l l  l i f e  cyc le .  
Software design inc ludes  methods f o r  producing and 

and re ta ined  da ta  (F igu re  2-1). 

INPUTS 

PEOPLE 

TECHNOLOGY 

TOOLS 

v e r i f y i n g  modular designs and s t r u c t u r e d  programs. 
Designs a r e  recorded us ing  a des ign  language baled 
on Add, i nc lud ing  both procedural  designs and data 
designs. Advanced design ensures semantic corre- 
spondence o f  s p e c i f i c a t i o n s  through da ta  dlCt lOndr-  
Ies .  Systematic design prov ides  f o r  funct ional  
a l l o c a t i o n  and decanpos i t ion  o f  procedures and 
data.  Sys tenat lc  p rogrmming inc ludes  the elabord- 
tlOn o f  p r o g r m  designs us ing  stepwlse r e f l n m e n t ,  
program design language, and cor rec tness  tech- 
nlques. Taxonay inc ludes  a proper p r o g r m  w i th  a 
s i n g l e  entry and s i n g l e  e x i t ,  a pr ime p r q r & q  
ccmposed o f  zero o r  one p red ica te  cons t ruc ts ,  inner 
syntax o f  data r e f l n m e n t  and opera t ions  and t e s t s .  
The Ada based deslgn language used t o  record de-  
s igns  a s s i s t s  the reasoning o f  the designer and h l s  
comnunication w i t h  o thers  i n  g e t t i n g  the  d e s i g n  
r i g h t ,  knowing i t , and conv inc ing  o the rs .  Softwdre 
development includes the methodology f o r  the  e a r l y  
tmp lmen ta t i on  and i n t e g r a t i o n  o f  d e t a i l e d  des igns  
i n t o  product increments represented a s  source code  
l i b r a r i e s ,  con f i gu ra t fon  con t ro l  l ed  through 1 i b r d r y  
h ie ra rch ies .  I n  a d d l t l o n  t o  incremental  r e l e a s e s ,  
the concepts o f  rap id  p ro to typ ing ,  s o f t w a r e  f i r s t ,  
and Component reuse are being r e f i n e d  f o r  r o d t i f i e  
use on p r o j e c t s  i n  the fu tu re .  Software mdnagernent 
assures the e f f e .  t i v e  a p p l i c a t i o n  o f  qual1 f1i.d 
people w i t h i n  a p r t d l c t a b l e  process to  o r i g i n a t e  a 
q u a l i t y  product t h a t  s a t i s f i e s  perfonndnce r e q J i r e -  
ments on schedule w i t h i n  cos t .  The use o f  S O f t l d r e  
Development Plans and techn ica l  reviews e n s j r r  6 n  

accurate view o f  s ta tus .  

THE SOFTWARE FACTORY 

PROCESS 

MODERN 

SOFlWARE 

ENGINEERING 

PRACTICES 

REUSABLE 
PRODUCTS 

f i g u r e  2-1. Sof tware  t a c t o r y  
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The o u t p l t s  of  t h e  p rocess  i n c l u d e  u s a b l e  p rcd -  
ucts  o f  h i g h  q u a l i t y  t h a t  nay be r e u s a b l e  c a p a b l e  
o f  a s s u r i n g  c o n f i d e n t  c u s t a n e r  o m e r r h i p .  Usab le  
p r o d u c t s  are t h o s e  t h a t  o p e r a t e  h a r n o n i o u s l y  wi th in 
the user o r g a n l r a t i o n .  They are a d a p t a b l e  t o  new 
r e q u i r e m e n t s  and f e a t u r e  u s e r f r i e n d l y  i n t e r f a c e s .  
The reward  f o r  t h i s  may be f r i e n d l y  u s e r s .  Q u a l i t y  
p r o d u c t s  are t h o s e  t h a t  have few errors a t  t h e  end. 
These are the same ones t h a t  have few e r ro rs  a t  t h e  
beg inn ing .  A r e u s a b l e  p r o d u c t  i s  one t h a t  c o n t i n -  
ues t o  meet chang lng  r e q u i r e m e n t s  t h r o u g h  p r o d u c t  
enhdncenents. Fu the rno re ,  r e u s a b l e  p r o d u c t s  a r e  
t r a n s p o r t a b l e  t o  o t h e r  sys tens  f o r  s i m i l a r  uses. 
The M a  language p r a i s e s  t o  p r o v l d e  f o r  s o f t w a r e  
r e u s a b i l i t y .  Us ing  a r t i f l c i a l  i n t e l l i g e n c e ,  d 
canponents l i b r a r y  o f  s p e c i f i c a t i o n s  can  be i n t e r -  
r o g a t e d  f o r  s o f t w a r e  components needed f o r  new 
a p p l i c a t i o n s .  As t h e  i n d u s t r y  becanes s k i l l f u l  and 
e x p e r t  a t  m a t c h i n g  e x i s t i n g  p r o d u c t s  w i t h  new 
needs, t h e  s o f t w a r e  f a c t o r y  may becane a r e a l i t y .  

k c t l o n  3 

SYSTWATIC USE OF ADA AS A DESlGN LANGUAGE 
F l l r t i n g  w i t h  Ada? C a r e f u l .  She i s  more than  a 

p r o g r m l n g  language but l e s s  than  a c o m p i l e r  f o r  
In M a t r e n d s  John N a i S b l t t  p o i n t s  o u t  t h a t  ' 2 % s  are+* i k c  horses.  If you want t o  r i d e  them, 

I t  pays t o  go i n  the  same d i r e c t i o n  t h e  ho rse  i s  
a l r e a d y  t r a v e l l n g .  He a l s o  p o i n t s  o u t  t h a t  fads 
o r i g i n a t e  a t  t h e  top,  tend t o  peak. and then fade 
o u t .  On t h e  o t h e r  hand. t r e n d s  a r e  bo t tom up, 
possess b roader  s u p p o r t ,  and p e r s f s t .  

The use o f  Ma as a p r o g r a m i n g  language may 
co r respond  t o  N d i S b i t t ' S  c h a r a c t e r i r a t i o q  o f  a fad,  
t o p  down, perhaps e x p l a i n i n g  i t s  s l u g g i s h  beg in -  
n i n g .  f o r  Ma the  prog-mtn ing language. t h i s  i s  
t h e  awkward p e r i o d  between promise and d e l i v e r y .  
@I o t h e r  hand, t h e  use  o f  Ada dS a d e s i g n  language 
may be a t r e n d ,  a r i s i n g  fran t h e  bot to tn a s  a popu- 
l a r  c h o i c e .  I t  i s  happening today. 

A d e s i g n  language may be used f o r  a number o f  
reasons .  I t  p r o v i d e s  t h e  f a c i l i t y  t o  r e c o r d  d e s i g n  
d e c i s i o n s .  Once reco rded ,  these  d e s i g n  d e c i s i o n s  
can be shared w i t h  o t h e r s  forming t h e  c a m u n i c a t i o n  
b a s e l i n e  among system eng ineers ,  s o f t w a r e  eng i -  
n e e r s ,  and i n t e g r a t i o n  and t e s t  eng inee rs .  I t  
p r o v i d e s  t h e  b a s i s  f o r  t h e  d e s i g n e r  t o  be more 
c o n v i n c i n g  i n  t h e  de fense  o f  h i s  des ign .  I t  p ro -  
v i d e s  o t h e r s  w i t h  a r l e a r  r e f e r e n c e  p o i n t  t o  focus 
t h e i r  c r i t i c i s m s .  The r e s u l t  i s  a b e t t e r  des ign .  
The use o f  & a  a s  a d e s i g n  language encourages good 
s o f t w a r e  e n g l n e e r l n g  w h i l e  a t  t he  same t ime  p e n i t -  
t l n g  t h e  d e s i g n  t o  o b t a i n  r i g o r  I n  syn tax  and 
semant ics th rough  the  use o f  Ada c a n p l l e r  p r o d u c t  
t o o l s .  Ada a s  a d e s l g n  language p r o v l d e s  a p l a t -  
form f o r  systematically accompl l s h l n g  r a p l d  p r o t o -  
t y p i n g  t h r o u g h  use  o f  t h e  m e r g i n g  s o f t w a r e  d e s i g n  
and p r o d u c t  I t s e l f .  In  ways yet t o  u n f o l d ,  Pda 
d e s i g n  language may a l so  be a u s e f u l  b a s i s  f o r  
a s s i s t i n g  t h e  access o f  r e u s a b l e  c a p o n e n t s .  To be 
a b l e  t o  s u p p o r t  t hese  v a r i o u s  uses s y s t e m a t i c a l l y ,  
Ada a s  a d e s i g n  language needs t o  be I n t e g r a t e d  
f n t o  a s o f t w a r e  e n g i n e e r l n g  methodology.  

3 . 1  Four  L e v e l  Des ign  

An Ada based so f tware  d e s i g n  methodology has 
been dddpted fran the  So f tware  e n y l n e e r l n g  p rac -  

t i c e s  d i s c u s s e d  i n  advanced d e s i g n ,  S y s t H l d r l C  
des lgn ,  and s y s t r w a t i c  prayraimning. Th is  dddl1:d- 
t i o n  f e a t u r e s  f o u r  l e v e l s  o f  d e s i g n  suppor ted  111 d 
management s t r a t e g y  and d t e c h n i c a l  s t r a t e g y .  Thc 
management s t r a t c g y  maps t h e  f i r s t  two l e v e l :  o f  
d e s i g n  t o  t h e  s p c c i f i c a t i o n  p rocess  and 1 t S  r i l v I ( ' *  
and t h e  l a s t  two l e v e l s  o f  d e s i g n  t o  t h e  d e t a i l e d  
d e s i g n  p rocess  and I t s  r e v l e w .  The t e c h n l c . j l  
S t r a t e g y  p u r p o s e f u l l y  and r i g o r o u s l y  u t i 1  l i e s  t k  
e x p r e s s i v e  power o f  Ada a t  each l e v e l  o f  d e s i g n  b j  
mapping p a r t i c u l a r  Ad.? c o n s t r u c t s  f o r  use  a t  e d c h  
1 eve1 . 

The purpose o f  each l e v e l  o f  d e s i g n  ( F i g u r e  3 - 1 1  
c o n s l d e r s  the  expcc ted  aud ience  h i e r a r c h y  r t i  t h l r l  d 
p r o j e c t ,  r a n g i n g  f r a n  readers  t o  w r i t e r s  and I n -  
c l u d i n g  progranri iers, e n g l n e e r s ,  and inandqers . 
E a r l y  d e s i g n  l e v e l s  must  be I n t u i t i v e l y  u n d e r s t d n g -  
a b l e  b y  a l l  members o f  t h e  aud ience  and C d n r l ' J t  

depend on everyone be ing  f u l l y  Ada l l t e r d t e .  i o  
s u p p o r t  t h i s  need, Leve l  1 d e s i g n  i s  i n t e n d &  6 :  
t h e  u s e r  c o n t r a c t .  The u s e r  s h o u l d  be though t  u f  
a s  o t h e r  s o f t w a r e  p r o d u c t s  t h a t  m i g h t  u t i l i r e  o r  
i n t e r f a c e  w i t h  t h e  s o f t w a r e  b e i n g  d c s i q n c d  d s  
Opposed t o  t h e  end u s e r  o f  t h e  system. L e v e l  ? 
d e s l g n  p o r t r a y s  t h e  d e s i g n  p a r t s  dnd t h e l r  I t . :  :- 
t i o n s h i p s  b o t h  da ta  I n t e r f a c i n g  and  t a s k l n q .  , I , .< . !  
3 d e s i g n  C l d b O r d t C S  d d e t a i l e d  f u n c t i o n d l  I:, , I  

t h a t  i s  lndependcnt  o f  t h e  t a r g e t  o p e r d t i n l  ,I;. 
and i n s t r u c t i o n  st!t a r c h i t e c t u r e .  F i n d l  I ~ .  I..... : 
d e s i g n s  a r e  d e t d l l e d  des igns  t h a t  a r e  f " : ! , ,  ! : ,  - 
g e t e d  t o  the u p c r d t i n g  system a n d  IP * , IV  ,C I i , ! 
a r c h i t e c t u r e .  reJdy  f o r  i m p l e r i e n t a t i o n  r ~ n , , r  : .  ' '  , 
e f f i c i e n c y  and ccipcic i t y  cons t r a  i t i  t s  . 

FOUR LEVEL DESIGN 

M E T H O D O L O G Y  Tt lAT  R I G O R O U S L Y  UTILIZES TtjE E X P R E S \ l ' .  f 
P O W E R  OF A D A  POL A T  E A C H  LEVEL 

LEVEL 1 U S E R  C O N T R A C T  

LEVEL 2 D E S I G N  P A R T S  A N D  R E L A T I O N S H I P  

LEVEL 3 D E T A I L E D  F U N C T I O N A L  D E S I G N S  INDEPErdDE k l  o f  
T A R G E T  
- O P E R A T I N G  S V S T E M  
- I N S T R U C T I O N  SET ARCHITECTURE 

LEVEL 4 D E T A I L E D  D E S I G N S  FULLY T A R G E T E D  R E A D I  I . ' f '  
I M P L E M E N T A T I O N  

F i g u r e  3 - 1 .  Four  Leve l  Des ign  

3.2 MdndgRilent S t r a t e g y  

The management s t r a t e g  f o r  t h e  fs i r r  : c . , . '  
d e s i g n  approach  ( F i g u r e  3-23 maps l e v e l s  1 a n d  2 :: 
t h e  s p e c i f i c a t i o n  r e v i e w  m i l e s t o n e  and l e v e l s  .3'.: 

4 t o  t h e  d e s i g n  r e v i e w  m i l e s t o n e .  The s p e r i t  , : J -  

t i o n  r e v i e w  m l l e s t o n e  equates t o  the  P r e l  i : - , i r i r , ,  

Destgn Revlew (POR), t h e  des ign r e v i e w  m t l e s t o r , e  
equa tes  t o  t h e  C r i t l c a l  Des ign  Revlew (CDR). I n  
t h e  HiLSTD 2167 process l e v e l  1 and 2 d e s i g n s  j r c  
l n c l u d e d  f n  the  So f tware  Top Leve l  Des ign  D o c ~ r . 1 : ;  
l e v e l  3 and 4 des igns  a r e  l n c l u d e d  i n  t h e  Sof t* . i r e  
D e t a i l e d  Des ign  Document. 

Beg lnn lng  w i t h  Leve l  1, t h e  s p e c i f i c a t l v n  I S  
t n p u t  t o  the s o f t w a r e  d e s l g n  p r o c e s s .  A Level 1 
d e s i g n  I s  produced and reco rded  i n  t h e  fonn  o f  d q  
Ma PdCkdgc ~ p C C i f l C d L i O n .  The L e v e l  1 d C 5 l ~ j r l  d:!,j 
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any r e u s e  c a n d i d a t e s  a r e  s u b j e c t e d  t o  a d e s i g n  
r e v i e w .  The d e s i g n  r e v i e w  lndy be coriducted e l e c -  
t r o n i c a l l y ,  or  l t  may be conducted th rough  a meet- 
i n g  o f  team members. P a r t i c i p a n t s  a r e  h i g h l y  
t r a i n e d  e x p e r t s  c m i  tted t o  r e v i e w i n g  t h e  d e s i g n  
f o r  canpl  e teness,  c o r r e c t n e s s ,  u r a h i  1 i t y  , p e r f o n n -  
ance, and o v e r a l l  u s e r  s a t i s f a c t i o n .  Each r e v i e w e r  
must  be p e r s o n a l l y  s a t i s f i e d  w i t h  e v e r y  aspec t  
b e f o r e  t h e  d e s i y n  r e v i e w  i s  concluded.  The a p p l i -  
c a t i o n  o f  modern s o f t w a r e  e n g i n e e r i n g  p r a c t i c e s  hnd 
t h e i r  e n f o r c e n e n t  t h r o u g h  a unanimous concensus o f  
t hese  h i g h l y  t r a i n e d  e x p e r t s  i s  expec ted  t o  p r o v i d e  
a p o w e r f u l  impetus t o  d r a m a t i c a l  l y  improved p r o d u c t  
qua l  i t y  . 

Once t h e  d e s i g n  I s  s a t i s f a c t o r y ,  t h e  m e t r i c s  
a s s o c l a t e d  w i th  t h e  s o f t w a r e  e n g i n e e r i n g  p rocess  
and the  s o f t w a r e  p r o d u c t  a r e  rev iewed  and expec- 
t a t i o n s  t e v l s e d .  Fo r  the s o f t w a r e  e n g l n e e r l n g  
p rocess  the  m e t r i c s  i n c l u d e  p r o d u c t i v i t y  and wall-  
t y  e x p e c t a t i o n s .  f o r  t h e  s o f t w a r e  p r o d u c t  t hese  
r n r t r l c s  i n c l u d e  c m p l e x i t y  measures, r e l i d b i l l t y ,  
dnd ccmputer  r e r o u r c e  l o a d i n g .  Iticse m e t r i c s  dfe 
r e v  iewed f o r  compl i a n c e  w i  th  budgets,  perhaps 
n e c e s s i t a t i n g  ad jus tmen ts  f n  t h e  d e s i g n  I n  an 
e f f o r t  t o  ach ieve  ccmp l iance .  The s p e c i f i c a t i o n  
itself may need t o  be reassessed and p a r t i t i o n e d  

l n t o  e s s e n t i a l  r e q u i r e n e n t s  and d e s i r a b l e  f e d t u r e s .  
C e r t a i n  d e s i r a b l e  f e a t u r e s  may need t o  be el i i n i -  
n a t e d  o r  reduced I n  o r d e r  t o  c a n p l y  w i t h  mdndgo.ient 
budge ts .  

A t  L e v e l  2, t he  d e s l g n  f o r  each canponent  p d r t  
i d e n t i f i e d  i n  l e v e l  1 I s  reco rded  b S  an Ada p a c k d g c  
s p e c i f i c a t i o n  and i t s  body. The Leve l  2 Ada p d c k -  
a3e s p e c i f i c a t i o n  and body a r e  e v d l u d t e d  f o r  reuse 
c a n d i d a t e s ,  c o n t i n u i n g  t h e  s y s t e m a t i c  e x p l o l  t a  t r o n  
o f  r e u s a b i l i t y .  The d e s i g n  r e v i e w  i s  conduc ted ,  a s  
i n  L e v e l  1. M e t r i c s  da ta  i s   ired and ana lyzed  
f o r  L e v e l  2 w i t h  t h e  d e s i g n  t o  c o s t  p rocedure  
f o l l o w e d  i f  necessary.  The So f tware  Top L e v e l  
Des ign  Document i s  t hen  s u b j e c t e d  t o  t h - ,  P r e l i m i -  
n a r y  Des ign  Review (PDR). Throughout  t h i s  p rocess ,  
s y s t a n s  eng ineers  and so f tware  e n g i n e e r s  work i n  d 
dependable r e l a t f o n s h l p  i n  shaping and f i t t l n ]  
d e s i g n s  t o  meet u s e r  needs. 

A t  I e v e l r  3 and 4 .  t h e  d e s i g n  f o r  e d c h  i d r n -  
t i f i td s u b u n i t  i s  reco rded  as an Ada procedure  1 ~ 1 t h  
i t s  accunpdnying i n t e n d e d  f u n c t i o n  ccninentary 
P rocedure  C A L L  semant ics and i n t e n d e d  f u n c t i o n  
carrncntary  a r e  e v a l u a t e d  f o r  reuse  c a n d i d d t e s ,  
a g a i n  c o n t i n u i n g  t h e  s y s t a n a t i c  e x p l o i t d t l o n  o f  

B . 4 . 1 . 4  



r e u s a b i l i t y .  Design reviews a r e  conducted. ' Met- 
r i c s  da ta  i s  analyzed. The design t o  c o s t  proce- 
dure  cont inues t o  operate but w i t h  d lmin ishcd 
f l e x i b i l i t y  s ince the s p e c l f i c a t l o n  has been base- 
l i n e d  a t  PDR. 

3 . 3  Technical  S t ra teqy  
The Technical S t ra teyy  ( f i g u r e  3-3)  governs the 

mapping o f  Ada cons t ruc ts  t o  each l e v e l .  This 
mapping i s  intended t o  f o l l o w  the a r c h i t e c t u r a l  
l i n e  o f  t he  language. futhennore, t he  C O n S t N C t  
mapping by l e v e l  p rov ides  J na tu ra l  p a r t i t i o n i n g  
s u i t a b l e  f o r  educat ing bo th  readers and w r i t e r s  a 
l i t t l e  a t  a tiiiie. 

Ada cons t ruc ts  a r e  mapped t o  each l e v e l  f o r  
ou te r  and inne r  syntax. Duter syntax inc ludes  
organ iz ing  u n i t s  and con t ro l  s t ruc tu res ,  bo th  
sequent ia l  and asynchronous. The inne r  syntax 
prov ides  the format f o r  expressing data and the 
opera t ions  and t e s t s  on the  data. The cons t ruc ts  
a r e  assigned t o  each l e v e l  w i th  the o b j e c t i v e  o f  
s a t i s f y i n g  the purpose o f  t h a t  l e v e l .  Once as- 
signed t o  a l eve l ,  a cons t ruc t  i s  pe rm i t ted  t o  be 
used i n  subsequent l e v e l s .  

The Mi. product form f o r  Level 1 i s  the package 
s p e c i f i c a t i o n  used t o  express the  user  con t rac t .  
This c a l l s  f o r  an organ iz ing  ou ter  syntax along 
w i t h  Inner  syntax c m c n t a r y .  Level 1 i s  l i m i t e d  
t o  d few s e l f  ev ident  cons t ruc ts  needed t o  accoin- 
p l i s h  i t s  purpose. Those cons t ruc ts  a re  l i s t e d  i n  
F igure  3 - 4 .  They can be conven ien t ly  organized 
i n t o  a package s p e c i f i c a t i o n  template used t o  
govern the s t y l e  o f  the design record ing .  Other 
des iyn  record ing  gu ide l i nes  r,.ay be set f o r th ,  
i nc lud ing  naming convention, ca inentary  f o r  i n -  
tended func t ions ,  and key words i n  s t ruc tu red  
c m e n t a r y  use fu l  i n  encouraginy the use o f  the 
s t a t e  machine model. 

The product fonn f o r  Level  2 i s  the package 
s p e c i f i c a t i o n  and package body used t o  express the 
design pa r t s  and t h e i r  r e l a t i o n s h i p .  This c a l l s  
f o r  an od ter  syntax o f  s t r u c t u r i n g  and tasking 
cons t ruc ts .  The inne r  syntax may be expressed as 
Ada abs t rac t i ons .  i nc lud ing  abs t rac t  data types. 

( 

1 

Procedural e labo ra t i ons  a re  no t  c d r r l e d  out I n  
Levc l  2 but  instead are penn i t t ed  to  cppedr d S  
procedure C a l l s .  The a d d i t i o n a l  Level 2 L w S ? v c . r ? S  
are  show i n  F i yu re  3 - 4 .  Those too can be c;inren- 
i e n t l y  o y a n i r e d  i n t o  package s p e c i f i c d l  1 0 1  d n d  
prckaye body templates used t o  govern the S t y l e  o f  
the  des ign  record ing .  Design recordrng qu ide l  ines  
o f  Level  1 iliay be expanded to  inc lude the n t i s t r n c t  
data  types l r n n i s s i  b l e .  

The product form f o r  Level 3 i s  the procedure 
e l a b o r a t i o n  used t o  express a d e t a i l e d  func t i ond l  
desiyn.  This c a l l s  f o r  a f u l l  conplement o f  (J 'J te r  
syntax func t i on  expressions and inner  syntax d d  t d  

r e f i nenen t ,  i nc lud ing  predef ined data types and Add 
prhni t lVCS. The a d d i t i o n a l  Level 3 cons t ruc t5  dre 
shown I n  f i g u r e  3-4 .  Here too, procedures and t n 5 k  
templates are  used t o  gutde the s t y l e  o f  the design 
record ing .  Add i t i ona l  record ing  guide1 ines m y  be 
s ta ted .  Furthermore, t o  c o n t r o l  the q u a n t i t y  o f  
the  Ma POL being produced, Level 3 may be I i ! n i  ted 
to  the e labo ra t i on  o f  on l y  those procedures prri:ent 
I n  Level 2 as procedure ca l  Is. 

The product form f o r  Level 4 i s  the P r ' J L e J J r V  
e labo ra t i on ,  a s  we l l  as  f unc t i on  e labo ra t i ons  u:ed 
t o  express a f u l l y  targeted, d e t a l l e d  design. 1 J I I  
MIL-STD 1 0 1 5 A  i s  a v a i l a b l e  a t  Level 4 ( I C C  1 I ,  ,r 'c 
3 - 4 ) .  

Sect ion  4 

CONCLUS I ON 

So f twdreLny inee r ing  and Ada 1Q Des lqn  1 5  : # , :  .!'I 

e a r l y  mi les tone repo r t  on the s y s t w d t i c  u ' , c  I J ~  : . : I  
a s  a design language. F r a n  t h i s  e a p r r l e n i e ,  I !  1 5  
c l e a r  t h a t  the prepara t ion  f o r  the use o f  ;!o f i n s  

been undcrest i i i iated i n  several a r e d s .  i n c l d f j i n j  : . l d  
ca i i p i l e r  a c q u i s i t i o n ,  t oo l  i n t e y r d t i o n ,  dnd i ' : , : d -  

t i o n .  

The /\da ca i i p i l e r  a c q u i s i t i o n  d i f f i c u l r i c >  11: 

i ndus t r y  are we l l  known. The ne& f o r  Add V r L J s i i s  
dur ing  the design a c t i v i t y  has ,ece ivea l e s s  d : : ~ n -  
t i on .  It i s  n i c e  to  have an Ada f ron t -end ;roJ,ct 
f o r  seinantic and syntax ana lys i s  d u r i n g  1 e . e : ~  ! 

TECHNICAL STRATEGY 

- 
INNER SYNTAX 

PURPOSE SYNTAX FUNCTION DATA 

LEVEL 1 USER CONTRACT ORGANIZING COMMENTARY COMMENTARY 

LEVEL 2 DESIGN PARTS A N D  STRUCTURING. PROCEDURE CALLS ABSTRACT DATA 
RELATIONS HIPS TASKING TYPES 

OUTER .- I 

EXPRESSIONS PREDEFINED DATA LEVEL 3 DETAILED FUNCTIONAL - 
DE SI 0 NS INDEPENDENT 
OF TARGET 

TYPES, 
ADA PRIMITIVES 

LEVEL 4 DETAILED DESIGNS 
FULLY TARGETED 

REFINEMENT REFINEMENT 

F igu re  3-3. Technical Stra'teqy 
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PURPOSE 
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SYSTEM A N D  INSTRUCTION 
SET ARCHITECTURE 

LEVEL 4 DETAILED DESIGNS 
FULLY TARGETED 
READY FOR 
IMPLEMENTATION 

OUTER 
SVNTAX 

PACKAGE SPECIFICATION 
PROCEDURE SPEC 
TASK SPEC 

WITlt. USE 

PACIlAOE ROOV 
IS  SL I 'A I IA I  E 
UCtIIN 
IF  T I K N  
CAST. 
LOOP (WItILE 

FUNCTION 
ACCEPT. DO 
SELECT 

ELSIF 
WHEN 

fO11. EXIT WHEN1 

INNER.SYNTAX 

DATA FUNCTION - 
COMMENTARY COMMENTARY 

AOSTRACT DATA 
W P t S  

P m c r n u i i A L  C A L L S  OENERIC INSTANTIATIONS OF 
TASK C N T I I V  CALLS ABSTRACT DATA STAUCTURfS 

PRIVATE DATA TVPES 
DERIVED DATA TYPES 
TASK TYPES 

:9.+ .-:.-.I ADA DATA TVPES 
REM. M O D  RECORD 
OR. AND. XOR. NOT ARRAY 
RANGE, ABS RANGE 
9 . .  -. < -. I 9  
TERMINATE CONSTANT 
DELAY SUBTYPE 
EXCEPTION. RAISE 

PRAGMA DELTA, DIGITS 
ABORT FOR. USE. AT 

ACCESS TVPE 

ADA CONSTRUCTS 

F i g u r e  3-4. Ada C o n s t r u c t s  

and 2. It i s  a n e c e . - i t y  tr, have t h i s  t o o l  a v a i l a -  
b l e  and r e a d y  f o r  use  d u r i n g  l e v e l s  3 and 4 .  
W i t h o u t  i t ,  the r e e n f o r c e m e n t  o f  Ada e d u c a t i o n  
t h r o u g h  t h e  d e s i g n  a c t i v i t y  i s  l o s t .  Fu r thennore ,  
t h e  e r r o r  d i s c o v e r y  o p p o r t u n i t y  i s  postponed t o  
downs t r e a i n .  The d e s i g n  i n s p e c t  ion  accai ipanying 
each  d e s i g n  l e v e l  needs t h e  o u t p u t  o f  t he  Ada 
f r o n t - e n d .  Where r a p i d  p r o t o t y p i n g  i s  i n t e n d e d ,  
t h e  Ma c o m p i l e r  i t s e l f  i s  needed to  p e n i i i t  code 
g e n e r a t i o n  and e x e c u t i o n .  

For  e a r l y  Ada p r o j e c t s .  t h e  e d u c a t i o n  o f  t h e  
p r o j c c  t tediii may need t o  be i n t . w j r d t c d  w i  t t i  t h e  
d e s i g n  a c t i v i t y .  One approach  t o  t h i s  i s  t o  t r a i n  
p e o p l e  i n  one d e s i g n  l e v e l  a t  a t i i i ie .  f u ' l o w c d  by  
t + e  pe r fo rmance  o f  t h e  d e s i g n  a c t i v i t y  and i t s  
r e v i e w .  In t h i s  w a y ,  t h e  t r a i n i n g  schedu le  can be 
d i s t r i b u t e d  t h r o u g h o u t  the  pe r fonndnce  p e r i o d ,  t h e  
t r a i n i n g  f o r  each l e v e l  can be r e f i n e d  based on the 
resu l t s  o f  t h e  p r e c e d i n g  d e s i y n  r e v i e w ,  aiid p r o j e c t  
p e o p l e  new t o  Ada can p r o y r e s s  t h r o u g h  the e x p e r i -  
ence s h a r i n g  p r o b l e n s  and o h t a i n i n y  a s s i s t a n c e  
w i t h i n  t h e  team. I n  t h e  f o u r  l e v e l  d e s i y n  ap- 
p roach .  L e v e l  1 r e p r e s e n t s  o n l y  f o u r  c o n s t r u c t s ,  
a l l  c o n t a i n e d  i n  a t e m p l a t e .  As a r e s u l t ,  t h e r e  i s  
an e a r l y  success f o r  t h e  new Ma PDL d e s i g n e r .  
L e v e l  2 adds more c o n s t r u c t s  and i s  a y a i n  g u l d e d  by  
t s n p l a t e s ,  a s s i s t i n g  success.  L e v e l  3, however, 
r e p r e s e n t s  t h e  f i r s t  t i m e  the  Ada PDL d e s i g n e r  must  
o p e r a t e  s u b s t a n t l a l l y  on h i s  orin w i th  a l a r g e  
number o f  Ada c o n s t r u c t s .  A t  Leve l  3, d e s l y n  
r e v i e w s  may r e s u l t  i n  a s u b s t a n t i d l  r e w o r k i n y  o f  
t h e  d e s i y n .  By L e v e l  4 ,  t h e  M a  e x p e r i e n c e  k y l n s  
t o  pay  o f f ,  and Ada POL d e s j g n e r s  a r e  c a n p l e t i n g  
t h e i r  d e s i g n s  w i t h  c o n f i d e n c e .  

I n  f o n n u l d t l n g  d r c h l t e c t u r e s  f o r  Ada s o f t w a r e  
d e s i g n s ,  new t h i n k i n g  may be ncctled. l l n p o r t a n t  

b e n e f i t s  a r e  p o s s i b l e  i n  k d  t h r o u y h  moder'r! s u f t -  
ware e n g i n e e r i n g .  To o b t a i n  these  b e n e f i t s ,  
s o f t w a r e  d e s i g n s  mus t  make t h e  t r a n s i t i o n  fro- 
des igns  thdt s i t n u l a t e  d a t a  f l o w  t o  d e s i g n s  t b d !  
e n c a p s u l a t e  d a t a  i n  ways n a t u r a l  t o  t h e  app l  i c ~ t i o r  
p r o v i d i n g  o n l y  as  much v i s i b i l i t y  a s  necessd ry  ~ I J  
a s  much i n f o n n a t i o n  h i d i n g  a s  p o s s i b l e .  h r t h e r -  
more, t o  o b t a i n  these b e n t - f i t s ,  t h e  Ada t d r i i n ;  
model needs t o  be e x p l o i t e d  a t  a p p r o p r i a t e  1 C b t ' l s  

i n  t h e  d e s i y n .  The i n t e r f a c e  w i t h  c o m e r c i J !  
s o f t w a r e  p r o d u c t s  needs t o  be aCCOMlOddted i n  d h d y  
t h a t  r e t a i n s  the  c o s t  b e n e f l t s  o f  t hese  produc!s ,  
but docs n o t  d u l l i n a t e  t h e  s o f t w a r e  d r c h l t e i t d r e .  
More work i s  needed i n  u n i f o r m  d e s i g n  mnrphdl , l , ic r  
f o r  MJ t o  p r o v i d e  u s e f u l  M a  a r c h i f e c t u r k n  ~ ~ . ~ ~ 2 t ~ l ~  
f o r  e a r l y  u s e r s .  a s  w e l l  a s  t he  framework f d r  

e x p l o i  L i n g  r e u s a b l e  canponents by a1 I u s e r , .  

Very  l i t t l e  i s  known abou t  Ada i i i e t r i c s .  As 3 
v e s u l t ,  t h e r e  a r e  many q u e s t i o n s  abou t  the  51:e o f  
Ada prograi i is and d e s i g n s ,  Ada p r o d u c t i v i  t j ,  d d  

q u a l i t y ,  and Ada per formance.  The e a r l y  e x p e r i r n i e  
w i t h  Mn PDL seems t o  show t h a t  a l o w  r d t i o  may 
e x i s t  between ma source  l i n e s  and Add Jcs1 jn  
l i n e s .  I t  may be 2 : l  o r  3:l. Where Ada is m t h  
t h e  t a r g e t  l anguaye  and t h e  d e s i g n  language,  t h e  
Add POL i s  p a r t  o f  the p r o d u c t .  I n  t h i s  c d s e ,  
ins ight  abou t  t h e  r a t l o  may a s s i s t  t h e  a l l o c J t i o n  
o f  e f f o r t  and schedu le  between the d e s i y n  and code 
a c t i v i t i e s .  The r e c e n t  e x p e r i e n c e  showed t h d t  t h e  
ca i i b ined  Leve l  1 and 2 r a t l o  wds about  2 5 :  I ,  Level 
1-3 a b o u t  1O:l. and L e v e l  1-4 l e s s  tnan 5 : 1 .  Not 
enough I s  known t o  use these  r e s u l t s  a s  m a n a y t w c i c  
budge ts .  

The r e v i s e d  I O M  FSD f o u r  l e v e l  Ada PDL i 8 e t h -  
o d o l o g y  hdS d e n o n s t r a t e d  sane i m p o r t a n t  b e n e f i t s  i n  
r e c e n t  use ( f i g u r e  4 -1) .  Expanding the alrdience o f  

WGINAL PAGE tS 
OF mi? QUALITY 

B . 4 . 1 . 6  



BENEFITS: FOUR LEVEL ADA PDL METHODOLOGY 

AUDIENCE - BOTH TECHNICAL AND NON-TECHNICAL 

PRODUCTIVITY - TEMPLATES AT LEVEL AND CONSTRUCT 

QUALITY - MINIMUM CYCLOMATIC COMPLEXITY 

PERFORMANCE - FOCUS ON TASKING AT LEVEL 2 

PORTABILITY - FULLY TARGET INDEPENDENT LFVEL 3 

REUSABIL!TY - LEVEL FORMAT PERMI1.S EFFCCTIVE 
ACCESS FROM COMPONENTS LIBRAR'I' 

8' ADA TRAINING - LEARNING AND USING ADA, A Ll7TLE AT A 
TIME, IS A N  EFFECTIVE APPROACH TO ADA 
TRAINING, ALONG ARCHITECTURE LINE 

MAINTAINABILITY - FOUR LEVELS PROVIDE A STAGED, LAYERED 
INTRODUCTION TO DESIGN AND 
IMPLEMENTATlON DETAILS 

PR ED ICTAB I L I N  -- MEETING COST AND SCHEDI'LE AS ASSISTED 
BY DESIGN TO COST FEATURE OF 
MANAGEMENT APPROACH 

F i g u r e  4-1.  B e n e f i t s :  Four  Leve l  Ada POL Methodalogy 

d e s i g n  r e v i e w e r s  f r a  t e c h n i c a l  t o  n o n - t e c h n i c a l  
p e r m i t s  u s e f u l  and needed use r  i n p u t  t u  the  conp le -  
t i o n  o f  t h e  s p e c i f i c a t i o n  and t o  e a r l y  d t c i g n  
d e c i s i o n s .  Th is  i s  made p o s s i b l e  by a t r a i n i n g  
program. p a t t e r n e d  a f t e r  t h e  f o u r  l e v e l s ,  t h a t  
teaches & a  a l i c t l e  a t  a t ime  a long  the  a r c h i t e c -  
t u r a l  l i n e  o f  t h e  language. Fu r thennore ,  t h e  
temp la tes  t h a t  gove rn  the p r o d u c t  s t y l e  a t  each 
l e v e l  p r o v l d e  a c r u t c h  for  t h e  e a r l y  Ada u s e r  both 
r e a d e r  and w r i t e r .  a boos t  t o  p r o d u c t i v i t y ,  and the  
assurance o f  u n i f o r m i t y  i r  d e s i g n  s t y l e .  P roduc t -  
i v i t y  may be g i v e n  a more S u b S t a n t i d l  boob: h e r ,  
reuse  o f  e x i s t i n g  Ada components can  be ob ta ined .  
The Leve l  1 t e m p l a t e  format  may a s s i s t  t h i s  canpo- 
n e n t  r e u s a b l l i t y  by p r o v i d i n g  t h e  renab!ics needed 
to  access a c m p n e n t s  l i b r a r y .  Managing and 
m e e t i n g  c o s t  acd schedule budgets I s  dSSfSt f?d  b y  
t h e  s y s t e m a t i c  use 3 f  t h e  d e s i g n  t o  c o s t  f e a t u r e  
embedded i n  r r c h  d e i l g n  l e v e l .  Once completed,  t h e  
f o u r  l e v e l s  o f  Pda PDL p r o v i d e  t h e  l a y e r e d  l n t r o -  

d u c t i o n  t o  d ~ s l l J l l  i l c ~ t a l l s  needed by thc l " J l f l ! ~ i l t ~ ~ ' '  

t o  l e a r n  d e s i g n  d e t d i l s  a s  needed and t d  cr1;in.i':' 
any r e q u i r e d  ~ I ' O ~ U L ~  a d a p t a t i o n s  w i t h  c o n f  ik!t,f I '  

Designs p r o d u c d  w i t h  the fou l -  l e v e l  Add 1'31 I C , ! '  . 
o d o l o q y  tend la bc t he  s i m p l i f i e d  J c s i g 1 i b  1 ' ~ ' .  
r e s u l t  frail itiodcvri s o f t w a r e  engineer in<; .  ;!! 
same ti-? these  d r s i g n s  c o n s i d e r  perfor:.idnct* rea- 
q u i r e a c n t s  and i i icrting r e a l  t i m e  deddl  \ ( :e>  t t m t v . i l  . '  
t h e  t a s k i n y  focus a t  L e v e l  L an6 t h r o u j q  t v e  '~e' . -  
r i c s  a t  e v e r y  : - v e l .  r i n a l l y  t he  t ' i e t ! idd .~ l , i ; ,  
s u p p o r t s  p o r t a b i l i t y  t h r o u g h  the  L e v e l  3 1.11 ; c z '  

independence o f  u l i c r ~ t i n g  s y s t e r  and i n s t r . . , c :  : \ '  

s e t  a r c h i t w t u r c .  

A1 though t r u e  t h a t  t h e  community h a 5  d n j c r -  
e s t i i n a t e d  t h e  p w p a r o t i o n  f o r  Ada, t h i s  p r e p d r j ! i . .  
has  been s t a r t e d  dnd i s  underway. I t  lady a l s a  !x 
t r u e  t h a t  t h e  c n u u n i t y  has u n d e r e s t i m a t e d  t-.: 
b e n e f i t 5  o f  Ma which a r e  s u b s t a n t i a l  and d r e  5 : : i I  

:e i n g  d i scovercd . 
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Analysis and Specification Tools in Rela t ion  to the APSE 

John W. Hendricks 

Sys tems Technology, Inc. 

Ada and  t h e  Ada Programming Support Environment (APSE) specifically address t h e  

phases of t h e  sys tem/sof tware  l ifecycle which follow a f t e r  the user's problem has 

been t rans la ted  in to  system and sof tware  development specifications. The 

"waterfall" model of the  l ifecycle identifies t he  analysis and requi rements  definition 

phases (now known as the  concept exploration and t h e  demonstration ti validation 

phases in the  l ifecycle as described in the  new DOD-STD-2167) a s  preceeding 

program design and coding. 

Since Ada IS a prograrnming language and the APSE is a prce;ramming support 

environment,  they a r e  primarily ta rge ted  to support program (code) development,  

B.4.2.1 



t es t ing ,  maintenance,  etc. T h e  use of Ada based or  Ada r e l a t e d  specif icat ion 

languages (SLs) and program design ianguages (PDLs) c a n  ex tend  t h e  use of Ada back 

i n t o  t h e  s o f t w a r e  design phases of t h e  l i fe  cyc le  (for example,  see Goldsack). 

However,  t h e r e  s e e m s  to b e  s o m e  agreement  t h a t  Ada is  no t  appropr ia te  as a language 

for deal ing with t h e  "problem space" and  t h e  ear l ies t  phases of t h e  l i fecycle  (Brodie, 

Mylopoulos, and Schmidt,  p.4 10; Booch,p. 359). 

T h e  Ada Programming Support  Environment (APSE), and indeed t h e  Ada language 

i tself ,  was  defined as a response to t h e  "software crisis" in DOD embedded systems. 

Booch (p.7-8) l i s t s  a number of symptoms of this situation, including: 

o Responsiveness. Computer-based sys tems of ten  do  not  m e e t  user 
needs. 

o Modifiability. Software maintenance is complex, costly,  and er ror  
prone. 

In par t icular ,  sof tware  maintenance is identified as being responsible for  between 

40% and 70% of the  to ta l  hardware and sof tware  expendi tures  f o r  these  systems. W e  

c a n  e x p e c t  t h a t  many of the  systems for  t h e  NASA space  s ta t ion  will s h a r e  impor tan t  

charac te r i s t ics  with t h e  DOD embedded sys tems (e+, complexity,  long-lifetime, 

changing requirements ,  real-t ime inter-iaces), and they should be subject  to many of 

these  s a m e  problems. 

The  world's best  programming ef i o r t  cap not produce a system which is  responsive to 

t h e  user's needs i f  the  requirements  upcn which i t  depends d o  not  descr ibe a n  

appropr ia te  solution t o  t h e  user's problem or i f  the  requirements  a r e  in a form which 
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we have great d i f f icu l ty  t ranslat ing i n t o  an  implementable  design. Also, if this 

problem exists with t h e  original requirements  for a system, it c a n  be r e p e a t e d  e v e r y  

t ime there i s  a change  in t h e  problem. W e  do not  have d a t a  which c h a r a c t e r i z e  t h e  

distribution of software maintenance costs be tween "bug fixes" and  changes in 

requirements, but  it would not  be surprising if a la rge  par t  of t h e  "maintenance" costs 

are caused by evolution of t h e  requirements,  especially for sys tems which a r e  in 

serv ice  for a number of years. Therefore,  both the  responsiveness problems and a 

large part of t h e  maintainabili ty problems which charac te r ize  the  sof tware  crisis may 

be beyond t h e  reach  of Ada and t h e  APSE, unless faci l i t ies  to deal with t h e  processes 

of concept  exploration and demonstrat ion & validation can  smoothly be linked in to  the  

APSE. 

There  are a number of developments which demonst ra te  t h e  feasibil i ty and 

desirabil i ty of formalizing specifications or a rch i tec ture  designs at higher levels of 

abstract ion than t h a t  provided by a programming language (e.g., Ralzer;  Zave). These 

e f f o r t s  share  an object ive of reaching out  toward t h e  "problem space" w i t h  a 

representat ion which is much easier  to use than a programming language for 

describing the requirements,  but  is still capable  of being t ranslated or t ransformed 

in to  compilable code with l imited manual intervention (au tomat ic  prograrnming). 

They also share  a commitment  to extensive use of computer  based tools to  suppart  t h e  

processes  of analysis, specification and design. To the  degree  t h a t  these approaches 

succeed,  they can address t h e  problems of responsiveness t o  init ial  user needs and 

main tenance  of responsiveness as these needs change  over  the  l i fe t ime of t h e  sys tem.  

It is unlikely t h a t  any of these e f f o r t s  will e l imina te  t h e  need for substant ia l  a m o u n t s  

of human programming in the  development of the  la rge  and complex sys tems for 

8.4.2.3 
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which Ada  and t h e  APSE are designed. If these  new techniques a r e  to be 

explo i ted  for major  pro jec ts  such as t h e  N/,SA space stat ion,  they  must  be capable  of 

being used in conjunction with program design and  development  under t h e  APSE. 

O n e  of t h e  m o s t  promising of these new systems is Process  Archi tec ture  Design 

Technology (PADtech). Sys tems Technology is working with t h e  developers  of this  

sys tem,  Associative Design Technology, Ltd  (USA), to introduce and support  

this  new technology for aerospace and mili tary applications. An overview of PADtech  

and s o m e  of t h e  issues raised by its use with t h e  APSE should suggest  both t h e  promise 

of t h e s e  new sys tems and some of t h e  issues to be considered in  "integrating" these  

new tools i n t o  major projects  which will be using t h e  APSE. 

PADtech  includes both a methodology and a set of computer  based tools t o  support  t h e  

use of t h e  methodology in c rea t ing  an  a rch i tec ture  design for  a complex system. The 

methodology provides a representat ion to formally describe: 

o t h e  s t ruc ture  of processes which we expec t  t h e  sys tem to 
implement ,  t h e  events  which  will cause each process to be executed ,  
and t h e  e v e n t s  which  each process c a n  cause  to occur;  and 

o t h e  conceptual  s t ruc ture  of the  en t i t i es  involved in t h e  processes in 
t e r m s  of the  role relation hips between the concepts ,  object  types  
and objects.  

This representat ion (Process  Archi tecture  Design specification Language or  PADL) 

descr ibes  processes which may be implemented by hardware,  or by persons following 

procedures ,  as well 3s by software.  However, PADL has a precise semant ics  which 

enables  i t  to be t ransformed in to  executab le  forms,  ;rid this  inevitabil i ty makes  i t s  
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application a more demanding process. By way of contrast ,  Coldsack (p.11) noted t h a t  

"...the ease of use of PSL, SAD" and many others,  is partially due to the  absence of a 

precise ... seman tics." 

The computer  based tools for t he  application of PADtech include the  following: 

A design workbench which provides a high performance, c o b ,  icon 
driven, interact ive graphics interface fo r  t h e  cre.:tion and 
manipulation of the  graphical form of the  Proczs3 Archi tecture  
Design specification Language. The design workbench supports t he  
system archi tec t  in the evolutionary process of analysis, 
specification and design. I t  also provides support for  interactions 
with problem a rea  experts  and with program designers 2nd 
programmers. 

Modules which translate between the graphical form and t h e  textual  
form of the  Process Architecture Design specification LanguagL; 

A da ta  manager which provides bookkeeping support for  the 
evolving process archi tecture  design; 

A facility for building up a customized set of icons, process models, 
etc. which a r e  appropriate for  specific problem areas.  

An interpreter  for simulated execution of the  process archi tecture  
for an early prototyping, i terat ive design cycle. 

A "monitor" which collects the results of the  interprc ; i  ?xecuti\, (. 

A "debug" environment for controlling and examining t h e  results of 
interpretive execution. 

Code generation faci l i t ies  for transf orining Process Architecture 
Design specification Language descriptions for process and 
conceptual s t ructures  into the implementation languages, Ada and 
SQL. 
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P A D t e c h  is designed to be applicable to t h e  analysis, specif icat ion and design process 

at several d i f fe ren t  levels. First, i t  can be used at t h e  s t r a t e g i c  planning level. For  

example,  one can build a process architecture to represent  an e n t i r e  organizat ion or a 

major project ,  and use this  "enterprise modeP to ident i fy  and specify a u t o m a t e d  

information and  communication sys tems to support  operat ion of t h e  e n t i r e  enterpr ise .  

Second, PADtech  c a n  be used at t h e  system or integrat ion a r c h i t e c t u r e  level f o r  a 

s p e c i f i c  system. I t  can  be used to design the  a r c h i t e c t u r e  which def ines  t h e  overall  

structure f o r  a comple te  system, or to design and implement  a da tabase  and 

communicat ion "substrate" to in tegra te  many separa te ly  developed modules,  

including man- and hardware-in-the-loop elements .  Third, PADtech  c a n  b e  used t o  

specify,  design and implement  (by code generation) sys tems which c a n  readily be 

c h a r a c t e r i z e d  by "object processing" processes, i.e., processes which c r e a t e  and  

change  t h e  state of both abs t rac t  and "real" objects.  

PADtech  will be most  beneficial  when applied to sys tems with some of t h e  following 

character is t ics :  

o Requirements  which a r e  complex, not  completely understood, and 
a r e  expec ted  t o  evolve over the  life of t h e  system, 

o Requirements  for very high speed execution involving parallel  
and/or distributed execut ion,  

o Requirements  for real- t ime rcsponsiveness, 

0 A requirement  for high speed management  of complex. in te rac t ive  
d a t a  bases and cornmunicatior? s t ruc tures ,  

0 Integration of a large number of processes while maintaining 
protection against  ca tas t rophic  failures. 
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W e  expect t h a t  there will b e  a number of space station sys tems with these 

character is t ics ,  and t h a t  PADtech  and o t h e r  innovative tools for analysis, 

specif icat ion and design will b e  required to make these sys tems responsive t o  the 

requirements  and  maintainable  over  a long l ifetime. 

What a r e  s o m e  of t h e  issues raised by the  use of these tools with Ada and the APSE? 

Firs t ,  tools which a r e  geared to crea t ing  a problein space  or iented,  executab le  

specif icat ion or design specif icat ion tend to c u t  across  the  phases of the  lifecycle as 

defined in t h e  waterfal l  model. These tools gain much of their  uti l i ty f rom an  

i t e r a t i v e  cyc le  of analysis, execut ion and evaluat ion of the  specif icat ion as a 

"prototype," re-analysis, e tc .  They emphasize d i rec t  involvement of t h e  users or 

problem area e x p e r t s  in evaluat ing t h e  implications of a design specif icat ion as they 

a r e  revealed by repea ted  prototyping. The analysis and prototyping processes a r c  

supported by an  in te rac t ive  environment  which is heavily dependent  on "prototype 

execution" and graphics for  presentat ion and manipulation. Also, these new 

techniques push formalization back toward the problem specif icat ion and use 

(pdrtially) autoindted t ransformation to genera te  code  modules. This allows 

maintenance which is occasioned by changes in t h e  requirements ,  to be perlorrned on 

t h e  speci[ication/design rather  than on t h e  code. Then, t h e  revised specification is 

transfortned into updated code modules. (Jse of these new techniqttes will be mdde 

inore difficult  i f  a rigid segmentat ion in to  the  phases of a waterfal l  lifecycle model I S  

imposed by procurement  processes or by implementat ions of the  APSE. 

Second, t h e r e  a r e  several  reasons why specification and design tools should be linked 

i n t o  the  APSE. Most important ly ,  if design specif icat ions such as those in PADL a r e  

t o  be used f o r  main tenance  and a r e  to become a par t  of t h e  permanent  documentat ion 
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of a systcrn,  i t  is impor tan t  to have  control  over  their  versions as o n e  does f o r  c o d e  

modules. Also, in  sp i te  of cveryone's tendency to claim t h a t  his sys tem is c o m p l e t e  

a n d  u n h e r s d ,  none  we. AJl of t h e  analysis, specif icat ion and design tools  would 

benefi t  f rom being ab le  to i n t e r f a c e  with o ther  sys tems which could complement  the i r  

own capabi l i t ies  (for example,  see Ripken). An "open" APSE could coord ina te  

be tween severa1"outside" tools, as well as between these  tools and code  development  

under t h e  APSE. 

Third, t h e  amount  of e f f o r t  being put into the  development of Ada and t h e  APSE 

create5 a certain mmentum towards making them all inclusive. If Ada is the 

programming language, why not use i t  as the  basis for  a design language, a 

specif icat ion language, a conceptual  design language, etc., and mandate  their  use? I f  

t h e  APSE is to control  the programming process, why not  mandate  t h a t  only tools 

which a r e  fully integrated in to  the  APSE c a n  be used f r o m  concept  exploration 

onwards? The potential  benefi ts  of such a coherent ,  s tar t - to-f inish development  

environment  need to be balanced against  t he  potent ia l  costs of using much less than 

opt imal  tools in the  pre-programming phases of t h e  l ifecycle.  

A detailed examination of these issues would be a major project  and is n o t  

contempla ted  here .  However ,  we  will suggest t h a t  in applying Ada, t h e  APSE and 

s tandards  s u c h  as 2167, we should be careful  not to let their  application expand to a 

point where they stifle innovation. The continuing revolution in microelectronics  is 

providing an  opportunity to c r e a t e  sys tems to solve increasingly complex problems; 

new techniques for  specification and design will also be needed to exploit  this  

opportunity.  which will b e  needed to build t h e  

increasingly complex sys tems we require,  will not b e  developed exclusively for  use by 

Many of these new techniques,  
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one industry or one language. Retaining the option to se lec t  different methodologies 

for problems which have differing characteristics may be the only e f fec t ive  approach 

at this  time. 

c 

Recall that the standardization of the APSE as a programming support environment is 

only now happening af te r  many years of evolutionary experience with diverse se t s  of 

programming support tools. Restricting consideration to one, or  even a few chosen 

specification and design tools, could be a real mistake for  an organization or a major 

project such as the  space station, which will need to deal with an increasingly complex 

level of system problems. To require tha t  everything be Ada-like, be implemented in 

Ada, run directly under the APSE, and f i t  into a rigid waterfall model of the  lifecycle 

would turn a promising support environment into a straight jacket for  progress. 
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SOME DESIGN CONSTRAINTS REQUIRED FOR THE USE OF GENERIC SOFTWARE 
IN EMBEDDED SYSTEMS: PACKAGES WHICH MANAGE ABSTRACT DYNAMIC 

STRUCTURES WITHOUT THE NEED FOR GARBAGE COLLECTION 

Charlee S. Johnson 

ABSTRACT 

The embedded systems running real-time applications, f o r  
which Ada was designed, require their own mechanisms for the 
management of dynamically allocated storage. There is a need f o r  
packages which manage their own internal structures to control 
their dealkcation as well, due to the performance implications 
of garbage collection by the KAPSE. This places a new 
requirement upon the design of generic packages which manage 
generically structured private types built-up from application- 
defined input types. These kinds of generic packages should 
figure greatly in the development of lower-level software such 
as operating systems, schedulers, controllers and device 
drivers; and will manage structures such as queues, stacks, 
link-lists, files, and binary/multary (hierarchical) trees. 
Generic structures like these will have to be carefully 
controlled to prevent inadvertent de-designation of dynamic 
elements, which is implicit in the assignment operation. A s t u d y  
is made of the use of the limited private type, in solving the 
problems of controlling the accumulation of anonymous, detached 
objects in running systems. The use of deallocator procedures 
for run-down of application-defined input types during 
deallocation operations is also discussed, 

INTRODUCTION 

Reusability is crucial to programs developed for 
Integration and Test (I & T) applications. The Ada language w a s  
specifically developed for use on embedded systems where 
most of the real-time applications work is performed. The 
creation of a software support environment for real-time w~r-k 
must first deal with the selection of a design approach which 
maximizes the reusability of Ada software components. The issue 
of Ada reusability does not just address problems of portability 
across machines and between projects, but also reusability 
within one project, and for one machine. One property of 
generic abstraction is the containment of a solution f o r  a 
system- and application-dependent problem. Once having been 
solved generically, that solution is available for re1 iab1.e 
reuse by all the applications of the system. 

BRIEF BACKGROUND 

Kennedy Space Center/ Engineering Development/ Digital 
Electronics Engineering Division is in the process of 
prototyping distributed systems supporting I & T applications, 
particularly the Space Station Operations Language (SSOL) 
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System, which is the I f T subset of the User Interface Language 
(UIL) for the Space Station. The discussions in this paper were 
developed from the results of systems designed and developed in 
Ada to demonstrate the feasibility of developing reusable 
software specifically targeted for real-time embedded 
applications. The Ada environment used was that of VAX Ada under 
VAX/VMS . 

USE OF ADA IN EMBEDDED SYSTEMS 

The implementation of the Ada KAPsE for a computer system 
can be performed in one of two ways. The KAPSE can be layered 
Over an existing operating system, using it's services and 
saddled with it's limitations. The KAPSE can also be directly 
layered onto the computer hardware, and act as a limited 
operating system. Ancillary operating system services will then 
need to be supplied by Ada applications. For most embedded 
systems the latter alternative will hold, for both developnsntal 
and performance reasons. Developmentally, it is harder to re- 
host both the operating system and the KAPSE to new computer 
hardware, than it is to re-host the KAPSE alone. A l s o ,  for 
applications developed on a layered KAPSE, performance will 
suffer as requests for system services have to be processed at 
two levels. The organization and system approach for the two 
levels of support, since they were not designed specifically to 
be integrated, will almost certainly be mismatched in many 
ways. 

For systems with a native KAPSE, the optional features of 
the Ada lancpisge (some pragmas, services) will be slow in 
appearing, or may be seen to be negative in effect. The system 
garbage collection feature in the KAPSE will be one of those 
features that won't appear initially. When it does appear, in 
many implementations, it's use will be precluaed in real-time 
systems. 113 

The garbage collection feature of the KAPSE tracks, and 
deallocates anonymous objects in the Ada system, thereby freeing 
the system resources that they use. 

Anonymous objects are previously-designated objects 
of a type associated with an access type (pointer type). A 
designated object is created by an allocator, which associates 
it with an access object (pointer object), which then, of 
course, designates it. Designated objects are implicitly 
declared by that allocation as objects of the designated subtype 
(subtype of object pointed to) of the access type, and are 
rompatible with all objects declared of the designated base type 
foriginal type referenced in the access type definition). 

Designated abjects become anonymous objects by three means, 
all have to do with assignment: 

1. The access object designating the object is assigned 
to the value of another access object of the same 

0 

type. 
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2 .  The access object designating the object is assigned 

3 .  The access object designating the object is assigned 

to a new value by an allocator. 

to tha value %ulll@. 

Unless the previously-designated object was designated by 
mcI,-e than one access object, after access object reassignment 1t 
becomes an anonymous object. 

The use of access types is necessary if a system is to be 
flexible, and capable of creating objects in response to needs 
that cannot be specified until the need arises. Release of the 
system resources used by objects of designated subtypes, is 
essential in that flexibility {or static types rather than 
dynamic types could have been initially specifisd) . 

In layered systems built on general-purpose operating 
systems, the tracking down and subsequent deallocation of the 
resources consumed by these anonymous objects (the garbage- 
collection process) will be a built-in feature. In VAX-VMS the 
KAPSE performs this service. In ATCT Ada f o r  the AT&T UNIX 
System V (Release 3 ) ,  this service is implicit in the system, 
because all Ada objects are created on the system heap, which 2 s  
managed by the system. In both cases, there is an ever-Dresent 
background process, perfonning rundown o f  dynamic objects 
declared in the system. The performance detriment due to this 
background process is unpredictable, both for when i+- occ,:irs (it 
is concurrdnt and unsynchronized with the applications) and f o r  
the systen resources it consumes. 

It is noted here that acc--- types can be both data arie 
task types. The problem of garbage-collection exists f o r  b o t h  
task and data types. In this paper, only the data type problem 
will be discussed. 

There is no requirement in the Ac'a Reference Manual (ARY;  
[ 2 ]  f o r  the garbage collection feature to be implemented in t h e  
KAPSE. For many embedded systems running real-time applications, 
it will be required that the garbage-collection feature, if 
present in the KAPSE, retain the capability of being turned off. 
The preFIence of unpredictable resowce consumption 1 s 
ccntradictory to the principals of real-time cmputiiv-j, 
in particular, the response to external interrupts in a tirnel). 
and reliable manner. 

i'his poses a new problem. Without garbage-collection, the 
only time that anonymous objects are collected by the s y s t e m  
(deallocated), is upcn the expiration of the scope of the 
application which contains the definition of the access typc. 
For anything 0'-her than restrictive vse of the access t y p e ,  
this will usually be a package specified at the highest scope in 
the program. This szope, by not expiring, implies that normal 
collection will never occur (without garbage-collection) . 

For proqrams running on embedded systems, this means 
dynamic objects will continuously be converted into anonymous 
objects, corrsuming more and more system resources, until the 
program aborts when the system resources are exhausted. This 
self-destructive behavior may not be noticed during verification 
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Or validation, if the process of creating anonymous objects is 
sufficiently slow. Indeed, well-written processes that are 
conservative in their exhaustion of syntem resources may live 
long before the limitations are breached. 

These programs must, then, control their own storage 
allocation and deallocation. A pragma for declaring the storage 
management for an object as being controlled by the application 
(Pragma CONTROLLED), and a generic package for deallocating 
controlled objects (UNCHECXED-DEALLOCATION) Will be available 
f o r  embedded systems development. The problem is that the 
implementation of these features must be standardized in the 
development of the application system, for there to be any 
assurance that anonymous objects will not collect. 

A design philosophy encouraging abstraction would tend to 
drive the Ada source code using these features into the hidden 
scape of a package. This would create, in the system, an 
assortment of packages which define, declare and manage private 
access types, while retaining complete control of the allocation 
and deallocation of objects designated by those types. The 
control of the storage allocation in these packages would need 
to be implemented in an efficient way, such that the use of the 
package types would be flexible and easy (to encourage package 
use). A requirement of these packages, stemming from real-time 
considerations, would be that the behavlor of systems using 
these packages should differ from that of systems using garbage- 
collection. The overhead incurred by the deallocation of storage 
should occur in predictable amounts, and in synchrony with, or 
under the control of the operation that incurs the overhead. 

A design philosophy encouraging maximum reusabi1it.y of 
software for the system, would tend to drive those packages, 
whera possible, into a smaller family of generic packages using 
reneric formal parameters which determine the differences 
between instantiations. Maximum reasability of these generic 
packages could be accomplished by the use of generic formal 
parameters matching the widest variety of input types, and by 
declarin9 internally controlled dynamic types which match the 
w i d e s t  variety of applications (flexibility of use). 

0 

GENERICALLY STRUCTURED ABSTRACT TYPES 

At some point in most Ada textbooks, a generic package is 
described that maintains a generically structured abstract type. 
The type is declared inside the package, and contains a 
component type within it which is defined from a generic forrnal 
type parameter (an application defined type contained within a 
generic structure). The example given is typically for a generic 
stack, list or queue, and the generically structured object may 
Le hidden within the package, or declared as private type, or 
j u s t  as a type. 

The important point of these textbock examples is the 
demonstration that the procedures for managing even very complex 
structures such as lists, queues, binary trees, multary 
(hierarchical) trees and files can be made general and 
separated from the procedures for managing the objects that they 
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0 t Contain. And, of course, that Ada supports the separation of  
these management procedures in a slick and easy-to-use manner. 

If the design constraints on the system (storage control) 
ccn be embedded into the packages managing generic structures 
composed of application-defined types, many possibilities open 
Up. The creation of what could be very complex systems such as 
operating systems containing schedulers, controllers and drivers 
becomes much simpler. These kinds of programs can be based on 
the use of just a few simple types of structure. 

In an example, if a generic structure such as an index were 
managed in a storage controlled way, many system structures and 
much system processing could be based upon it. An index is EI 

list of elements of one type (can be composite), ordered b y  
elements of a second type, the index key. Many sample 
applications are possible. Logons could be controlled by a list 
of user names versus passwords, ID'S, priorities, etc. Batch 
printing could be performed using a priority ordered list of 
print files. 9 disk c'irectory could be held as a list of files 
ordered by nde, or lists of lists. Batch scheduling of tasks 
could be ordered by priority or timestamp. More pertinent to I L 
T applications, a list of logical designators for the control of 
hardware on a Test System could order the blocks which contain 
their logical-to-physical access information. In this case a 
hierarchically ordered list of designators versus access blocks 
would probably be more useful. 

The focal point of the impact of this technology is on the 
reuse of software components within a project. The system- 
dependent functiocing buried in the body of packages , x i 1  1 
not be nearly as portable between machines and areas of 
application as it is reusable within a project. Some external 
software will be incorporated, of course, like it is today: 
DBMS, graphics support, user interface packages, communications 
support. These kinds of packages will be available where there 
are broad areas of commonality of function, and where system- 
dependent features can be profitably developed in packages by 
vendors. 

Standardization by the use of generically manacjed 
structures makes p o s s i b l e  the idea of technology i n s e r t . i c n  
directly into the applications of a system. If a sys ten-  
or application-dependent problem is solved one time, in : 
flexible and reusable manner, the developer can beat t h . i , .  
solution to d.?ath, reusing it over and over. 

Maintenancs of reusable software enhances the sysce . : :  
effectiveness. That reusable solution can be tuned at a minimx!n 
number of locations in the system, and re-iiiserted into t!?t? 
applications. If a better hashing function is fotnd for the key 
of our index example, for instance, a widespread increase in 
performance will result. 

D E S I G N  G O A L S  A N D  C O N S T R A I N T S  

The design of packages managing generically structureLl 
abstract objects must begin with the establishment of goals a n d  
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constraints. The goals and some of the constraints are 
independent of the problem of embedded systems. [ 3 ] :  

1. Package-managed generic objects that are declared in 
the application software should, where possible, be 
defined as abstract types, that is, made private. 

2 .  Maximize the generality of the package. This comes 
from tho use of formal generic parameters, 
particularly for types, that match the widest variety 
of application input types (type private instead of 
digits <>, for example). 

Maximize the usability of the application interface to 
the package. Extend, as far as possible into the 
application domain, access to the structures managed 
in the package, without violating the integrity of the 
internals, or the independence of the application 
from the generic software component (generality). 

Maximize the completeness of the application interface 
to the package. Give the application developer all the 
operations required to access and manipulate the 
internal structures, in a package-controlled manner. 

5 .  Support, if possible, multiple objects with the same 
package. This limits the need to re-instantiate the 
package several times within the same scope, for 
processing of multiple objects. 

6. Design for flexibility: a single tool, suited to a 
wide range of applications, is more likely to be 
remembered, and used by developers. 

3 .  

4 .  

7. Cover the infrequent failure modes. Most failures of 
algorithms and processing logic in programs occur at 
the extremes of their domain of applicability. 
Testing should cover the ends of rapges and the  
infrequent states of the application. If the software 
component is reusable, it will be used in a wider 
range of applications, and the infrequent failure 
modes will occur more frequently. 

Some of the constraints on the design of packages managing 
generically-structured abstract objects stem from requirements 
generated by the use of Ada on embedded systems, and are 
therefore application-dependent: 

8 .  The package operations must control and deallocate any 
internally allocated dynamic storage. 

9. The package must, by it's implementation, disallow any 
inadvertent de-designation of package managed dynamic 
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structures or elements. The application must be 
prevented from creating anonymous objects. 

10. The overhead involved i n  the processing of package 
operations must be predictable and controllable by the 
application (in contrast to the garbage ColleCtion of  
anonymous objects by the KAPSE). 

SELECTION OF DESIGN APPROACH 

The index package, which was described above as a list of 
elements ordered by another set of associated index key 
elements, will be used as an example for the selection of design 
approach. The index structure itself should be some kind of 
private type. Functions for index lookup by key item, element 
add/delete, and for stepping through the index sequentially 
should provide a useful set of operations for index 
manipulation. The INDEX type itself should be defined in the 
package specification, not hidden, so that it can be declared as 
an object in the package scope. 

The importance of having the index object in the scope of 
the application is in the flexibility of use of the object at 
the application level. The developer should be capable of 
passing the object as a parameter to subprograms developed at 
the higher level. If the object of type INDEX is hidden, this 
flexibility is not there. 

This generates a conflict with the application-specific 
constraint about allowing the application to inadvertently 
generate anonymous objects. If the object of type INDEX is 
declared in the user scope, any kind of assignment operation tc 
it will create an anonymous INDEX object. 

USE OF THE LIMITED PRIVATE TYPE 

The definition of the INDEX type as limited privatc 
prevents reassignment of it's value in any operation. It cannct 
be reassigned in the deepest level of any procedure (Ada) , c r  
generic software component that knows of it's typing. Thls 
allows the access object to be declared in the user scope, ar * 

used as a parameter, without any chance of creating anonymous 
objects from reassignment (unless the package itself does). 

The removal of needed functionality by the definition of 
the type as limited private, creates a need f o r  the definitior 
of analogous functions: assignability, comparab 11 1 t ir , 
nullability. 

The assignment function which has been removed cannot be 
replaced exactly. If the application is given the ability r -  
assign the same value to INDEX objects, even controlling t h e  
creation of anonymous objects during reassignment \/on't h e l p .  
Having two INDEX objects of the same value implies that the 
package cannot explicitly deallocate either INDEX designatecl 
object , without creating an erroneous circumstance (an I N D E  x 
object designating a deallocated object). This cannot be 
allowed. Therefore assignment (call it ASSIGN the I' : - - I '  
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operator cannot be overloaded) will first clear the access 
object value by deallocating the current designated object, and 
then copy the object designated for assignment, eleml-nt for 
element, until two copies exist, 

If the need f o r  mutual designation by the same INDEA object 
was a requirement, creation of anonymous objects could be 
controlled by the installation in the structure of the 
INDEX designated object of a semaphore-type variable, which 
would provide concurrent access to the structure along with the 
protection by mutual exclusion. This would allow the package to 
keep a count of the number of INDEX objects accessing the 
structure of the index, with the capability to deallocate the 
INDEX designated object upon the reassignment of the last INDEX 
object designating it. 

The compare function, !I=)( , can be overloaded for limited 
private types, and should be defined to compare the elements 
designated by the two objects of type INDEX, one for one, 
to establish equality. It should be noted here, that the 
application itself could define 11=)1, if the capability of 
stepping through the INDEX elements one by one, and retrieval 
functions for each element are provided. 

The re-initialization of the INDEX object ("nulltt 
assignment) is replaced by a DELETE function which deallocates 
the designated object (the entire structure). 

APPLICATION DEFINED DEALLOCATOR PROCEDURES 

There is one last potential for the inadvertent creation of 
anonymous objects by the package itself. The package allocates a 
node when it adds an element to the INDEX designated object, and 
it deallocates a node when a delete of an element occurs. 
However, ii: the type that was passed as the formal generic 
parameter for the key type or the element type is itself an 
access type, deallocation of the node will create anonymous 
objects that were previously designated by access objects of the 
application-defined input types. 

The solution f o r  this problem depends upon the developer. 
For every application-defined component type which is passed 
into the generic package as a generic formal parameter to be 
incorporated into a generically-structured storage-managed type, 
there must be an accompanying generic formal parameter 
in2icating a procedure which deallocates any objects designated 
by an object of the application defined component type. This 
allows the generic package to invoke that procedure for the 
components of the structure, so that the subsequent component 
deallocation will not create any anonymous objects. 

For application-defined types that are not or  do not 
contain access objects, the deallocator procedure passed would 
simply provide a null return, and do nothing. 

To repeat this rather complicated rule in other words, 
there is a need for every generic formal parameter of an 
application-defined type for a structural component, to have an 
accompanying deallocator procedure, not fo r  the type itself, but 
for designated objxts of that type, and designated objects of 
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those designated objects, and so on. If the developer wishes to 
incorporate structures within structures, the price of this 
complexity must he paid. 

INCREMENTAL DELETE FEATURE 

It is not reasonable to assume that the size of the 
structure being managed by the generic is known before 
the application is coded, or else the developer might have 
chosen a static rather than a dynamic type. The processing 
overhead incurred from the deletion of an entire structure or 
one part of a structure is then also not predictable. This c a n  
put the real-time performance of the package operations back to 
square one. 

If a real-time application performs a delete operation, 
the return from the subprogram must be made within application 
defined time-constraints for the package to be useful. In 
an example indicating the problem, a real-time application, 
while in between accepting interrupt entries from a hardware 
device (a timewcritical operation, for hardware interrupts a r e  
not queued), attempts to initialize the access object 
designating a structure, during the time window that is known t o  
exist between interrupts. During initialization of tke 
structure it is necessary, of course, to run down the enzire 
structure, deallocating each component of the current structure 
exhaustively, until the access object can be initialized. 
Unfortunately, during the time that the subprogram took control 
away from the real-time application, several interrupts wsre 
overwritten, and critical data was lost. 

The solution to this problem is to supply an incremental 
delete function. The overhead incurred from the delete a r d  
subsequent deallocation of a single element is knowable. Ar. 
incremental delete operation can then be defined, such that upon 
input of the logical parameter indicating how much of t h e  
structure to remove, and a physical parameter indicating t h c  
number of elements to remove for each successive invocation, t!%t 
structure will be whittled away incrementally. The order of 
deletion/deallocation should be such that a reference alwa 
exists to the remaining increments of the section of t ' : ~  
structure that are to be removed (for example, delete a t r i e  
from the leaves in toward the root). 

CONCLUSION 

It is concluded, by our studies, that it is feasible to 
create families of highly reusable generic software components, 
specifically tailored to support kinds of applications. These 
generic packages can maximize the reusability of software 
developed within and for a particular project. At the same time 
they can address the performance requirements of software 
developed for embedded systems running real-time applications. 
These requirements stipulate that such software be responsive 
and controllable in terms of direct processing overhead, and 
incur little or no background processing overhead of an 
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unpredictable nature (in contrast to the garbage collection of 
anonymous objects by the KAPSE). 
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ABSTRACT 
I t  is becoming clear tha t  our  s t anda rd  way 
of wr i t i ng  spec i f ica t ions  -- requircmcnts,  
dcsign, test, a n d  o the r  types -- is 
i nadequa te  f o r  large,  complcx. a n d  long- 
l ived systems. T h e  process by  which  thcy  
a r c  c rea ted  is uns t ruc tu rcd  a n d  o f t en  
cursory ,  a n d  t h e  resu l t ing  papcr  documents  
a r e  bulky ,  vague, inconsistent,  a n d  
d i f f i c u l t  to publish.  d i s t r ibu tc .  a n d  updatc.  
Wc are cspccially bad a t  wr i t ing  under -  
s tandable ,  consistent,  a n d  suf f ic ien t ly-de-  
tailed requi rcmcnts  specifications.  

Pa r t  of t h e  problem conics f r o m  t h e  
shor tcomings  of  wr i t t en  English a n d  the  
essentially lirienr scntcncc /paragraph/chap-  
tcr s t ruc tu re  of specifications;  i t  has  been 
aggrava tcd  by widcsprcad use of word 
proccssors t ha t  suppor t  no th ing  but text. 
Tcx t  will always bc a pa r t  of 
spccifications.  but thcrc  a r c  o ther  fo rms  of 
csprcssion tha t  can  bc morc su i tab le  for  
o t h c r 2 a r t s :  da t a - f low,  SADTIRoSS751. a n d  
Buhr! C H R 8 4 1  dia  r i m s  non-lincar tcxt or 
*' h y p c r t c x t ,"[" AN 701 s p r c a d s h c c t - 
suliportcd tablcs, char t s ,  a n d  graphs,  
n n i m:i t ion ol' a lgor i thms a n d  proccdurcs. 
gcoinctric niodcling. and  voicc a n d  vidco 
proLcssing. Al l  of thcsc bcconic viablc 
possibilities i n  thc  high-capacity.  display- 
o r i c n t c d  works ta t ions  of thc proposcd 
Space  S ta t ion  Da ta  hfanagcmcnt Systcm. 

. I  1:c usc  01' cxotic,  "high-tcch" prcscntation 
riicil i3 i n  spccil ' ii3tioiis w i l l  not 
rcu toni : i t i<31ly  makc thcm casy to producc 
and  undc r s l and ;  i t  is niorc impor tan t  that  
thcrc bc a rncthodology fo r  c rca t ing  thcm 
that cmphasizcs corrcclncss a n d  c la r i ty  of 
prcscnta t ion ,  a n d  which suppor ts  
coopcra t ivc  work ovcr a nctwork. T h c  
most complctc a n d  niaturc such 
mctt1odotogy is Sof.I'cch*s S A D T ~ ~ .  S A D ~ r  
is  un iquc  i n  thc  ani'>unt of a t tcn t ion  i t  
p a y s  t o  thc  w a y  pcoplc work  togcthcr a n d  
:IS individu:iIs an t1  i n  i t %  I':icilitics fo r  
s j)cL i 1' y i n g r cc l  u i r c iiic i i  I 
:I I I  !' pa r t i i u I :i r i iti 1) I c i t 1  c n I ;I I i 0 1 1 .  

i 11 d c' p c  11 tl c 11 t o f  

- I 1  4.4. I . 

OetlGlNAL PAGE fS 
ff mi? QUALITY 

SADT's most widcly-uscd componcnt  is t h c  
h ie rarch ica l  box-and-ar row d iag ram 
notation. I n  t h c  fu l l  methodology, t h a t  
notation is suppor tcd  by a n  " in f r a s t ruc tu rc"  
of proccdures,  formats .  protocols, a n d  
"ways of th inking"  tha t  makc  i t  possiblc 
f o r  many pcoplc to work foge lher  on a Inrgc 
projcct. For example,  the  Reader /Aut l ior  
Cycle is a pcer rcvicw proccdurc  tha t  
emphasizes cons t ruc t ive  c r i t i c i sm s n d  a 
disciplined cxchange  of idcas. Reader  Kits  
a n d  the i r  associatcd K i t  Files provide  a 
mechanism f o r  working  on par t  of a 
specification wi thou t  losing sight of its 
relationship to the  whole A N D  f o r  t racking  
the  evolution of the  spec i f ica t ion  ot 'cr  
t i  me. 

T h c  papcr  proposes a network-based s! s t c m  
f o r  writ ing,  rcvicwing. a n d  publishing 
multi-mcdia spec i f ica t ions  wi th  tools a n d  
proccdurcs based on SADT mcthodologi  1 1  
envisions people a t  universit ies.  compantcs.  
a n d  N A S A  sites a11 ovcr the  world uorC,t i iS 
togcther t o  p rcpa rc  a requi rcmcnts  or 
design spec i f ica t ion  a n d  discusscs rhc  
possibility of semi-automat ic  con \c r s ion  0 1  
such a spec i f ica t ion  to Ada1  code, 
cur ren t ly  undc r  invcstigation a t  \ I 1  T K  
T h e  computc r -bawd  S A D T  tools d e \  c I c  t).J 
i n  that  projcct  wi l l  bc dcscrtbcd 

1 Everybody's Talking 

Natu ra l  languagc has cvol\  cd o \  c 'r  I hi. 
niillcnnia a s  ou r  most powcrl 'ul tool. i11. i i  
which t r u l y  scpara tcs  us f rom aniiii31s 
t lowcvcr ,  i t  is bcconiing appnrcn t  1 h 3 1  
"wr i t tcn  English" using t rad i t iona l  ( o r i n ,  
a n d  mcdin (chaptcrs  a n d  paragraphs .  ~ ' : i p c ~  
a n d  ink)  i s  insuf f ic icn t  to coniniutiic:iii '  
vc r y In r gc, com plc x I y - i n t c  r r c I :i t cd c o n  i i- 1) I , 
of a modcrn computcr-b3sCd c l c c t r o n i ;  
syslcni. 7'0 put  i t  ano thc r  w:i!', o u r  
_ _ _ _ _ - _ _ - _ _  

1 A d a  IS a r c g i s t r r d  tra.tcn!ark of the t!iiitr,i J::,i,..; 
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spec i f ica t ion  documen t s  v a r y  f r o m  

they  are supposed to do. 
"unsa t i s fac tory"  to "horriblc" i n  do ing  w h a t  

1.1 Words in a Row 

Writtcn Engl i sh  (or  t h e  language  of  your  
choice) is esscnt ia l ly  t h e  spoken  f o r m  
t rans la tcd  f r o m  s o u n d  t o  ink  pa t t e rns  on a 
word-by-word  basis and la id  o u t  i n  l inear  
form.  A s  such ,  i t  makes m a n y  of  t h e  same  
assumpt ions  as speech; f o r  example,  
p ronouns  a r e  based on t h e  assumpt ion  tha t  
t h e  l i s tencr  has a high-speed shor t - te rm 
mcmory  t h a t  c a n  ma tch  3 pronoun to thc  
last  ob jec t  named ,  thus r educ ing  repeti t ion 
of namcs. Unfo r tuna te ly .  i n  technical 
wr i t i ng  t h e  use of  p ronouns  is 
ovc rwhc lmcd  by  the  grca t  numbcr  of 
objccts need ing  to be namcd. Names  of  
th ings  a r c  t h e r c f o r e  rcpca ted  over  a n d  
over ,  a n d  a r e  o f t e n  long proper  noun 
phrases con ta in ing  scvera l  cap i ta l ized  II 

adjcc t ivcs  a n d  adverbs .  T h c  rcsult ing text 
is much l ikc  a r03d con ta in ing  f r cqucn t  
pot h ol c s a n d bou Id c rs. 

Graph ica l  languagcs  such  as SADT boxes- 
a n d - a r r o w s  a n d  Buhr  d i ag rams  rcducc thc  
nccd to repca t  namcs  by usir.g two  

d imcns iona l  rcprcscnta t ion  of wr i t ten  text. 
T h a t  is, a n  objcc t  c a n  bc associated wi th  
th ings  above ,  bclow, right.  a n d  lc f t  of i t ,  
not just  to t he  lc f t .  SADT also generalizcs 
rhc )ioio1 - verb - objecf  scntcncc s t ruc turc  
ol' English in to  t w o  dimensions,  thus  bcttcr 
3 p p r o x i m a t i n g  thc  w a y  pcoplc t h i n k .  I n  a 
iiiiiplc csanip lc ,  thc  S A D T  I'ragm:nt 

'dirncnsions instead of t he  l incar  onc- 

I C ,  t h c  cqu iva lcn t  of thc  English " w i i u - 1  is 
~ , ' l h c c l  to makc  w i i 1 1 - 3  as  controllcd by  

noun-2". A morc complex  example ,  wh ich  
demonst ra tes  t h e  gcnera l iza t ion ,  is 

I1 
1 ¶ 

1 I t --. 
which  says  "rroirn-1 is verb-l'ed to  make  
tioirti-5 as controllcd by thc  tioirt~-3 aspcct O f  
troirti-2; tioun-5 is verb-2'ed to ma kc rtoir/i-6 
3s controlled by the  troioi-4 aspcct of 
tioutr-2". A somcwhat  morc  real  cxamplc: 

.,.rhiI .I-*. 
c1 

Put in to  English, it  says  (appioxim3fc lp) :  

T h e  s t a r  locator image is 
used to de tec t  d r i f t  by using 
the  dcsircd h a d i n g  f r o m  the  
o rb i t  clcments to ca1cu13tc 3 
d r i f t  vcctor. T h e  d r i f t  
vcctor is then  used to 
computc  a cor rcc t ion  f r o m  i t  
a n d  thc  s teer ing  j c t  a n d  mass 
dis t r ibu t ion  d a t a  f r o m  the  
orb i t  clcments da t a .  

A complctc SADT d iag ram,  such as this: 
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,-odrl structure 
c 

Might t r ans l a t e  i n to  a pagc or  more of normal tcxt. T h a t  tcxt would bc a s  rcadablc  or 
unrcadab lc  3s tcxt specifications normally arc.  

T h e  d i a a r a m s  shown abovc  all  havc  
activiti;, actions,  o r  verbs i n  thc i r  boxcs 
a n d  da ta ,  t.hiygs, o r  objccts as thc i r  arrows. 
T h c r e  a r c  In t a c t  f o u r  k inds  of d iagrams,  
of which  thcsc a r c  only  onc, callcd t h c  
Activity Diagram,  T h c r c  a r c  also Data  
Diagrams, S t a t e  Diagrams, a n d  Trans i t ion  
Diagrams. Da ta  diagrams, i n  which  thc  
a r rows  a r c  activit ies,  a r c  s imi la r  to thosc 
d r a w n  i n  Data  Basc dcsign a n d  Objcct-  
Or icn tcd  Dcsign. S ta tc  a n d  Trans i t ion  
d i ag rams  a r c  uscful i n  rcal-t imc systems. 

1 .2  \ \ 'hat  It's A l l  About 

F u n i 3 n  comniunicntion i5 bnscd on thc f a c t  
t h l t  wc h:ivc n vocabul3ry i n  conimon wilt1 
c3ch o thc r .  Unfor tunntc ly ,  t h a t  com- 
monal i ty  is on ly  approximnlc; wc can  ncvcr 
bc cn t i r c ly  ccr ta in  what  soniconc clsc 
mcans by "rcd" or  "big" or  "Multi-niod:iI 
Phascd R a d a r  Ar ray  Scrixl Intcrfacc." 
Tcc  h n ica I spcc i f ica t ions cn n bc 
cha iac t c r i zcd  a s  a scnii-ordcrcd sct of 
tcrmS a n d  thc  dc f in i t i ons  of thosc Icrnis - -  
i n  thc  u l t imatc  thc cn t i rc  spccification is a 
d c f i n i t i o n  of its titlc. T h c  problcms that 
arisc inc ludc  mul t ip lc  a n d  conf l ic t ing  
dcf in i t ions ,  thc  dcf in i t ion  of a tcrm bcing 
" f a r  : i \r,ay" f rom its ur:igc :\lid d i f f i cu l t  10 

f ind ,  a n d  multiple tcrms hav ing  the  snnic  
dc f in i t  ion. 

Dcf in i t ions  of tcrms o f t e n  thcr.scIvcs 
conta in  terms tha t  nccd dc f in i t i on .  SAl1 . I '  
USCS thc h ic rarchy  result ing f rom this ; I \  i t , ,  
o rganiza t iona l  backbonc. Each bos on :I 
d i ag ram conta ins  a word o r  tcrni t h n :  h : i b  

some mcaning  to t h c  a u t h o r  of thc  
d iagram;  i t  may havc  a d i f f c r c n t  nic3niiig 
to a rcadcr  of i t .  If t he  a u t h o r  f c c l s  t h a t  
rcadcrs might 1 , : t b c  3 d i f f c r c n t  nicsning 1 . ~ ~ 1  

3 box thaii \ : i s  i- . tcnt or  not know \vli: i i  i i  
mcans. h e  crca tcs  ;L ncw ( c h i l d )  dingr:ini 
that  "cxplains" o r  "dcfincs" thc  box i n  
grcatcr dc ta i l .  
that  nccd f u r t h c r  cxplana t ion  nrc 
thcmsclvcs cxpandcd  in to  di3gr:iiiis. t i i i l i i  
a11 tcrnis i n  n l l  uncxpandcd boscs  : i ic III 

coni nion pa r I n ncc a n d u n a  ni big u i) ti s. 

Onc  of thc  s t rcngths  of n a t u r a l  I:ingu:isc I-, 

tha t  words can  ha \*c  d i f r c r c n t  iiic:iiiiiis\ 1 1 ,  

difl 'crcnt contexts.  Th i s  rcduccs LI!. ~ C \ C I . I I  
ordcrs  o f  ningnitudc the numbcr  01. 
d i f f c r c n t  words wc nccd. t lorvc\ 'cr ,  
spccification wr i tc rs  o f t en  attciiipt t o  S I \  c 
ccrtnin impor tan t  words rigid dcl'iiiiIit)iis 
fo r  a11 contcxts,  placing thosc dcf in i t io i i r  
i n  a glossary. Thosc rcading  [ti ,  

spccificntiori m u s t .  i n  c f f c c t ,  iiiciiiori7c t h i .  

Boxcs on thc  chilti ~ ~ . I ; : I . I I I I  

- B.4.4.3 - 



entire glossary for t h e  duration of the i r  
reading; o the rwise  t h e y  will h a v e  to  f l i p  
back  and f o r t h  to it cont inuous ly ,  w i t h  no 
w a y  to k n o w  i f  t h e y  need t o  look up  a 
par t i cu la r  word. In SADT, t he re  is a n  
ind ica t ion  on e a c h  box if i t  is expanded.  
Boxes on d i f f e r e n t  d i ag rams  con ta in ing  t h e  
same  word  or ph rase  m a y  have  t h e  same o r  
d i f f e r e n t  expansions.  T h i s  is t h e  SADT 
equ iva len t  o f  t h e  common not ion  tha t  a 
word  o r  ph rase  m a y  h a v e  d i f f e r e n t  
mcanings  when  used in  d i f f e r e n t  contexts. 

1.3 SADT Media and t h e  Message 

S A D T  was  or ig ina l ly  designed f o r  use wi th  
n o  compute r  suppor t ;  a tcam having  
s t a n d a r d  o f f i c e  suppl ies  nnd a copicr could 
c rca t e  very  largc,  very  high-quality 
spcc i f ica t ions .  I n  f ac t ,  users tcndcd to 
rcsist h a v i n g  the i r  d i ag rams  cvcn typcd o r  
typeset;  a d i a g r a m  produced  wi th  a good 
pen, a s t ra ight -edge  or f lowchar t  t cmpla te  
( f o r  t h e  c u r v e d  corners),  a n d  legible 
h a n d w r i t i  n g sc c m cd mor e "co m f o r  t a b 1 e." 
An ea r ly  a t t e m p t  to coniputerizc the 
product ion  of d i a  rams using a timc-sharcd 
niainframelS"lTHafi was unsa t i s fac tory  d u e  
to slow rcsponsc t ime. 

Dcspite t he  power  of thc  S A D T  f i l i ng  a n d  
3r:hivc sys tcm (discusscd later), large a n d  
long- te rm pro jcc ts  found  the  main tcnance  
of 3 l a rge  sct of d i ag rams  ( thousands)  to bc 
burdcnsomc.  For tuna tc ly ,  the  pcrsonal 
conipu tcr has now bcconic powcrfu l  enough 
to suppor t  SADT,  a n d  i n  f a c t  is proving to 
bc a n  cxtrcrncly valuable addi t ion .  Thc rc  
a rc  a t  least f o u r  announccd  or  
S A D T  sys tems on the  

7 hc S,1da~MUh'CK851 systcm, irnplcmcntcd by 
rhc a u t h o r  as a n  l R & D  projcct a t  h l l T R E .  
runs  on a n  I B M  PC or  cquivalcnt.  A 
i ~ t i s f a c t o r y  systcm w i t h  thc ncccssary 
graphics  a n d  tclccommunications can bc 
bought f o r  $2500 ha rdware  Costs; a "supcr" 
ibstcrn w i t h  a big color display a n d  laser 
pr rn tc r  might cost $ l O , O O O .  

lnnncd 

2 The Way We Work 

1 lic : ~ b o v c  discussion has shown 3 f cw or  
l l i c  ii1:iny ways  t h a t  S A D T  niakcs it 
~ ) o ~ ~ , i l ) l c  t~ have a rcadablc.  undcrs tandablc  

technica l  spec i f ica t ion .  In  genera l ,  i t  docs 
SO by re lax ing  or genera l iz ing  English 
grammar ,  sen tence  a n d  p a r a g r a p h  
s t ruc ture ,  and t h e  d iv is ion  i n t o  sections,  
appendices,  glossaries, annexes ,  a n d  
volumes of  no rma l  spec i f ica t ions .  W i t h  
SADT, t h e  most complex  sys tems t h a t  wc 
a r e  capable  of  bu i ld ing  cnn  be spcc i f icd  
unders tandably .  Among  the  most complcx 
system spcc i f icd  in  S A D T  to d a t e  is thc  
f inanc ia l  system of  the  Dcpar tmcn t  of 
Energy. T h c  complc tc  spcc i f ica t ion  took 
more than  25 analys t -years  to wr i te  a n d ,  
pr in ted  doiible-sidcd, was cvc r  t w o  fcc t  
thick.  Bccause i t  was done  on papcr  bcforc  
computer  suppor t  was  ava i lab lc ,  t hc  
document  is qu i t c  i n t imida t ing  by i ts  shccr 
mass, bu t  still  vastly p rc fc rab lc  to a tcxt 
cquiva lcn t .  

Of course, thcre  is n o  f r c c  lunch .  
Spec i fy ing  a complcx systcm wcll wi th  
SADT takcs a grea t  dca l  of ha rd  work b!, 
traincd. cxpcr icnccd ,  smar t  pcoplc. T h a  t 
work is made  a s  product ive  a s  possiblc b)* 
o thcr  f ca tu rcs  of S A D T  tha t  dca l  w i t h  thc 

These f ca tu rcs  minht bc callcd thc  
pcoplc work  togcthcr a n d  ind iv idua l ly .  

"managcmcnt" or  Gociological*# aspccts of 
SADT. 

2.1 Al l  Toge the r  Now 

T h c  crca t ion  of spec i f ica t ions  is usually 3 
qu i t c  chaot ic  proccss i n  most organiza t ions  
A common f c a t u r e  is t he  "brainstorni 
scssion" a t  which a number  of pcoplc 
prcscnt idcas, argue. a n d  f i l l  b lackboards  
with scribbling. At thc  cnd ,  scvcral  
par t ic ipants  a r e  chargcd  wi th  " w r i t i n g  u p  
the  results." Howcvcr.  thcy will cap tu rc  
only thc  last sct of idcas proposcd a n d  not 
rcjcctcd; o thcr  good idcas d isappcar  
forcvcr  thc next t ime thc  b lachboard  is 
crascd or ncvcr appca r  bccausr thcir  
conccivcr is abscnt  o r  doesn't comrnunisa tc  
wcll i n  noisy nicctiitgs. T h c  basic idca o i  
bra i ns t or 111 i ng is good: coni [ii J n ic3 t i n g 
"ha l f -bakcd"  idcas quick ly  to othcrs  N ho 
can g r a b  thc good oncs anci a d d  the i r  okvn 
improvcnicnts. Wc nccd a bc t tc r  proccss 
a n d  nicdium than  thc  noisy niccting and 
black board.  

S A D T  includcs thc  Hcader/Author  Cycle t o  
rcplacc this aspcct of wr i t i ng  
spccifications.  I t  works a s  follows: 
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1. One analys t ,  ca l led  t h e  Author, 
creates 8 smal l  numbcr  of diagrams. 
H i s  SADT t r a in ing  tells h i m  to  l imi t  
t h e  d i a g r a m s  to one major thought  
or amount of i n fo rma t ion ,  
approx ima te ly  a half-day's work  on  
h i s  p a r t  t o  c rea t e  a n d  an  hour's 
work  t o  read. T h i s  a m o u n t  is 
typ ica l ly  one pa rcn t  d i ag ram a n d  
th rce  lo f i v e  ch i ld  diagrams. T h c  
SAda  d r a w i n g  tool hclps h im crca tc  
t h e  d i a g r a m s  us ing  a mouse a n d  
keyboard  such  t h a t  his t h ink ing  is 
a b o u t  t h e  subjcc t  mat tc r ,  not t he  
mechanics  of  d rawing ;  t hc rc  is n o  
nced  to  ske tch  d i ag rams  on  paper 
a n d  e n t e r  them in to  the  computcr  as 
3 sepa ra t e  step. 

d i ag rams  in to  3 Render K i t  a n d  
sends  t h c  k i t  to a small  numbcr  (1-4) 
of h is  c o l l c ~ g u c s ,  callcd Readers. 
Thcse  d i ag rams  a r c  t ransmi t ted  by 
c lcc t ronic  mail  a n d  appca r  in a "to- 
be-read" d i r cc to ry  i n  thc  Rcadcrs '  
mac  h i ncs. 

3.  Each Readc r  rcads  thc  k i t  wi th in  
one  work ing  day .  Hc  writcs 
comrncnts on the d iae rams  with 
a r rows  a n d  circlcs ind ica t ing  whcrc 
they  apply .  using the  mouse a n d  
kcyboard .  S A D T  Rcadcrs  a r e  
t r a incd  a t  g rca t  lcngth to makc  thc i r  
commcnts  cons t ruc t ivc  a n d  non- 
thrca tcn ing;  i n  c f f cc t ,  thcrc  is a 
"codc of courtcsy" f o r  wr i t ing  
comments.  Notc tha t  t i x  Author  
docs not havc  a l a r g e  "psychic 
invcs tmcnt"  i n  thc  d iagrams;  hc has 
spcnt  a ic la t ivc ly  shor t  amoun t  o r  
t imc crcn t ing  thcm. T h i s  contrasts to 
thc  d i f f i c u l t y  of c r i t i c iz ing  
sonicthing t h a t  somconc h a s  spcnt 
wccks or months  producing. 
Kcadcrs  who a rc  also traincd to bc 
Au thor s  comincnt on thc fo rma t  and  
undcrs tandabi l i ty  of thc d i ag rzms  a s  
~ c l l  3s thc i r  tcchnic:il contcn t .  

2. T h e  Author  asscmbles thcse 

4 .  Thc  1'c:idcr 1r:insmlts his conirncnts 
back to thc A u t h o r .  

5 .  T h c  Author  ~ c n d s  thc commcnts 
f rom cach f<c:rdcr w i t h i n  onc  
working  d:iy a n d  writcs n rcply to 
c:ich one.  Ilcrc :\g:\in, t h c  Author  is 

t r a incd  t o  wr i t e  rep l ies  t h a t  a r e  
cons t ruc t ivc  a n d  he lp fu l ,  no t  
a rgumenta t ivc .  While d o i n g  this, hc 
also makcs  notes  o n  t h e  d i ag rams  
ind ica t ing  changes  to be madc  t h : l t  
t h c  comments  havc  insp i rcd .  
Cornmcnts, replies, a n d  notcs a r c  
over lays  or windows  t h a t  can  bc 
a d d c d  a n d  removcd f r o m  tnc  
d i ag ram on the  d isp lay ;  on a color 
d i sp lay ,  they  a p p c a r  in color.  

6. T h c  Au thor  t ransmi ts  each  Rcadcr ' s  
commcnts  back to him. 

7. T h c  Readc r  rcads  the  rcplics a n d  
a d d s  add i t iona l  notes of his o w n .  
T h e  d iagrams,  comments,  rcplics, 
a n d  notes a r e  added  to his f i les.  

8. I f  necessary, the  Au thor  revises h i s  
d i ag rams  a n d  sends  them out a g a i n ,  
s t a r t i ng  ano the r  cyclc. T h i s  t imc,  
howevcr,  thc  Readcrs  havc thc 
prev ious  revision wi th  the  c o r n n i c n i ~  
a n d  replies. T h c y  can  thcrcforc  
check tha t  problems t h c y  noticcd 
have  bccn f ixcd .  

T h e  Cycle is "kept going" in the  manual  
system by the  L ib ra r i an ,  a c icrk  t ra incd  i n  

S A D T  proccdurcs.  He does thc  mcchani<al  
tasks such as  copying  a n d  ri l ing,  a n d  
makes s u r e  tha t  the  par t ic ipants  d o  t i i c i r  
jobs in the  t imc a l lowed.  In the  computc r -  
bascd systcm, no  L ib ra r i an  is nccdcd. J i i d  

the  par t ic ipants  may bc Tar apa r t  
physically on a looselp-couplcd nct A 01 h 

T h e  Rc3dcr, 'Author Cyclc h s s  bccn s l i t ~ v .  11 

to bc a n  cxtrcnicly powcr fu l  org: inizi i ig  
in f lucncc  on tcchnicnl work of a11 h i i i i ! j  

Many organiza t ions  t h a t  wcrc c . ~ p o s c ~ 1  IO  1 1  
t h rough S A D T  t r a in ing  n o w  usc i r  I 'LJ I  iiiLl,): 

or a l l  o f  thcir  work, cvcn w h c n  o(1ic.r 
aspects o f  S A D T  a r c  not invol\ .cd 1 1  
appears  to bc a good match to i h c  i i c L ' J r  

a n d  organiza t ion  of N A S A .  

Whcn uscd wi th  t h c  "codc of cour t c sy"  : 1 i ) d  

o thcr  aspccts of SADT, t h c  Cyclc briny.; 
ou t  thc  bcst, most c rca t ivc  thoughts  01' i h c  
participants.  rcduccs conf l ic t ,  a n d  c a p t u r c b  
thc proccsscs by which dccisions a I c  i i i : i dc~  

not just thc i r  rc.sults. f'coplc w h o  11:i\c 
workctl on suc.x!ssfu! S A D T  projccts I C I ~ ~  
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0 t o  urge  o the r s  to use i t  w i t h  t h e  fervor of 
rc 1 i g ious converts.  

2.2 I n  Organ lza t lon  T h e r e  is S t r e n g t h  

W c  h a v e  men t ioned  t h e  two-dimensional 
aspcct of d i a g r a m s  and l a t e r  a t h i r d  
d imcns ion ,  t h a t  of expans ion  of  boxes in to  
d iagrams.  T h e r c  is also a dimens ion  of  - timc, i n  w h i c h  e a c h  d i a g r a m  has  a poin te r  
to t h e  d i a g r a m  t h a t  i t  rcplaced a n d  to  t h e  
one  t h a t  rep laced  it,  a n d  notes by  thc  
a u t h o r  exp la in ing  w h y  i t  was  replaced. 
T h c  resu l t  is a f a i r l y  complcx d a t a  
s t ruc tu re ,  b u t  o n e  t h a t  proves easy to 
n:lvigate w i t h  t h e  r igh t  computer  support .  

A s ingle  set  o f  d i ag rams  related 
h ie rarch ica l ly ,  s t a r t i ng  f r o m  3 single "top 
Icvcl" d i ag ram,  is called a model. A modcl 
is a top-down exposit ion of a single aspcct 
o r  p a r t  o f  t he  sys tcm as seen f rom a single, 
st3tcd v iewpoint .  For cxamplc,  wc might 
havc  modcls of  3 single ins t rument  f rom 
viewpoin ts  such  3 s  a uscr. a main tcnancc  
tcchnic ian ,  a programmcr ,  a tclcmetry 
systcm, a n d  a powcr  system. Each of thcsc 
modcls will  emphas ize  the  parts tha t  a r c  
impor t an t  f r o m  i t s  givcn viewpoint a n d  
t v i l l  t a v c  poin tc rs  to o thc r  modcls f o r  
o thc r  par's a n d  to modcls of o thcr  aspects 
of t he  systcm to which  i t  is rclatcd.  

0 

3 Make it Run 

As done  on papcr ,  a n  SADT spccificntion 
c a n  bc a n  cx t rcmcly  rcadablc  docurncnt, 
1c:icling to ,iiuch bcttcr implcmcntation. I n  
t h e  computcr -bascd  systcni, thcrc a r c  cvcn 
111 o r  c poss i b i 1 i t  i cs: 

- A niodcl of thc ac t ;v i t ics  o f  a 
p r o j c c t ,  w i t h  cstiniatcd timc a n d  
i i ixnpowir : i t t 3~ l i cd  to tach box, cnn 
bc ana lyzcd  b y  thc machinc to 
dc t c rminc  a schcdulc  a n d  indicatc 
u h i c h  ac t iv i t ics  a r c  on thc cri t ical  
p:ith. T h i s  projcct modcl can bc 
m:iintaincd b y  thc  program o f f i cc  a s  
[tic m:istcr projcct  schcdulc.  with 
poin tc rs  f r o m  cach  box to thc  
cu r rcn t  st3tus rcport  f o r  that  
ac t iv i ty .  Oiic would bc ablc to 
rcvicw progrcss inforninlly a n d  

convenient ly  by  browsing  th rough  
t h e  model. 

- A modcl of  a piecc of  s o f t w a r e  can  
havc  execut ion  t ime  a n d  resource 
use es t imates  a t t ached  to  cach  box. 
I t  c a n  then  be "executed" a s  a s imu-  
la t ion  o red ic t  c r f o r -  
manCe!BSCHERT81P T h e  s imula tor  
could "animate" t h e  modcl on  a 
g raph ic  d isp lay  as i t  exccutcs.  Small  
rncters or bar c h a r t s  could  bc 
a t tachcd  to  boxes a n d  a r rows  on  thc  
d isp lay  to show cu r ren t  valucs such 
as processing rate,  q u c u c  Icngth,  
f rcqucncy ,  a n d  values of variables.  

- A deta i led  model of  a piece of 
so f tware  can  be c nver tcd  into 
skclcton Ada[Ada83y codc  dcf ining thc  
task structure. Each lowcst-lcvcl box 
can  then  be coded by a n  Ada  
programmer  (or the  appropr i a t c  
func t ion  f o u n d  i n  a l i b ra ry )  a n d  
combincd  wi th  the  skclcton to makc  
a runn ing  system. T h c  SAda  projcct 
a t  MITRE i s  beginning  to cxplorc 
this possibility. 

- A modcl could be conncctcd to it: 
implcmcnta t ion ,  ha rdware  o r  
sof tware ,  by d iagnos t ic  o r  mctcr ing  
probes. I t  could then  "run" in the 
same way tha t  thc  simill3tor 
an imat ion  discusscd above  d id .  A 
pcrson moni tor ing  the systcm could 
niovc u p  a n d  down  bctwccn lcvcls of 
detail .  

- A dctailcd modcl m i g h t  bc ab lc  to 
be convcr tcd  mcchanisa l ly  in to  a 
custom in tcgrz tcd  c i rcu i t  or piccc of 
wnfcr-scalc in tcgra t ion .  T h i s  niodcl 
niight also havc r u n  a s  a simul3tioi ,  
or bccn convcr tcd  in to  runn ing  A d s  
codc. 

Most of thc above sllggcstions have b c c n  
tr icd i n  onc  way or anothcr .  a n d  311 
showed promisc. T h c  t imc is r ipc to bcgin 
work on an I r t / rasir i ic i~rrc~ or sirppori 
cmiroiinic!ii on which the  tools fo r  wr i t ing ,  
rca d i n  g. a n d "c x c rc is i n g" co 111 p u t c r - b3 sc d 
spccifications can  bc in tcgra tcd .  I t  is cIc;ir 
tha t  such spcc-wr i t  iiig suppor t  
cnvironnicnts would h3vc a grca t  dc31 i n  
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common w i t h  p rogramming  suppor t  
env i ronmen t s ,  t o  t h e  poin t  of  both be ing  
p a r t  o f  a s ingle  l a rge r  system. 

4 Conclusion 

S t a n d a r d  prac t ices  f o r  c r ea t ing  a n d  using 
sys tcm spec i f ica t ions  a r e  inadequa te  f o r  
large,  advanced- technology systems. We 
nccd  t o  b rcak  a w a y  f r o m  papcr  documents  
i n  f a v o r  of  documen t s  t h a t  a r c  stored in 
Computers a n d  wh ich  a r e  rend a n d  
o the rwise  used w i t h  t h e  he lp  of  computers. 
A n  SADT-bascd  systcm, runn ing  on  the  
proposed Space  S ta t ion  d a t a  management  
ne twork ,  could  be a powerfu l  tool f o r  
do ing  much  of t h e  requi red  technical work 
of t he  S ta t ion ,  inc luding  crca t ing  a n d  
ope ra t ing  the  ne twork  itself. 
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TOWARDS A D O C U M E N T  S ' I ' R U C T U R E  EDII 'OII  

FOR 

S O F T W A R L  R E Q U  I R E M I - N T S  A N A L Y S  I S 

Vincent J. Kowa'ski and 
Dr. A n t h o n y  A .  Lckkos, University of I l o u s t o ~ l  

Clear Lake 
1. Introduction 

Of the six or seven phases of the software engineering ide cycle, require- 
ments analysis tends to be the least understood and the least formalized. cor- 
respondingly, a scarcity of useful software tools exist which aid in the develop 
ment of user and system requirements. 

in a seta' documents similar to those that usually accompany a delivered 
softwa~~product. We present the design of a software tool, the Document 
Structwe Editor, which facilitates the development of such documentatlon 

may be defined as the phase of software development in which the require- 
ments of the user of a pmpoaed software package are identified in a precise, 
complete and lq icalb coherent manner [6,i7. System constraints that result from 
the target hardware i s  well as nortfunctbnal constraints such as budget, time. 
and human reaurces must also be a p m  of a complete requirements analysis 

that appear frequentty in the literature are: 

In this paper we propose that requirements analysis should culminate 

The requirements analysis phase of the software engineering life cycle 

Two approaches to the problem of representing software requirements 

- natural (textual) language approach [lo, 12) 
- formal representation approach [3, 5, 9, 12, 191 

The first of these attempts to specify requirements in a manner that is easily 
developed m d  understood by humans. It has the disadvantage that it fliay 
give rise to logically incorrect sets of requirements. The second approach, 
though it  prevents logical inconsistencict, has as its main drawback tne fact 
that r3 formal language must be used. ' I  his is riot necessarily a desirable srtu- 
ation since user requirements are best provided by usem, not programmers. 

Sevcral software packages are spoken of as aids to the requirements 
aridyeia phase of the ooftware engineering life cycle. A list of eome of the 
more well-known of these packages is the foi,>wing: 

- PSUPSA (211 
- SREM [17, 181 
- SADT [ I  5, 161 
- SSA [SI 
- HOS [2, 131 
- GIGt 111 



A close examination of the above toote ha8 revealed that they are more suitably 
ch88ified a8 progam design and etmcture tools. Though the design of code ia 
an essential phase in the software engineering life cycle, it is most appropriatety 
thought of 88 largely independent of requiements analysis. 

Finally, the relative importance of good requirements ana!ysis is the mo- 
tivation far this work. Several studies have shown that the further a software pro- 
ject is along in the software engineering life cycle, the more difficult and costty 

is to fix bugs, make changes, and add new requirements [4, 111. As we have 
found, requhments are a difficult part of software development because of the Ipck 
of automated tmte that specifically aid requrements generation and maintenance 

2. Document Structure Editor 

2-1 Purpose and Goals 

7 die complete set of documentation that in general accompanies a d& 
livered software package provides a very complete set of requirements for 
that software package. Such documentation is, however, usually developed af- 
ter the code for the package has been designed, implemented and tested. Ex- 
amples of such documentation include: 

- General Information Manual 
- User Manual 

- Language (or Command) Reference 
-Guide 
- Tutorial 

- Syatem Requuernents Document 

The general goal of the Document Structure Editor is to provide an aut* 
mated software tool for the  development and subsequent management of &e 
umente such as those listed above. The most important feature of the DSE 
t8 that once the general structure of such a document is determined it may be 
stored as a Template for use in the generation of other similarly structured doc- 
uments. 
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2.2 Syaem Overview 

The Document Stucture Editor system is depicted in Figure 1. At the high 
est level of the system are the users. Next, the users' interface to the system 
cOns*kta of a set of commands supplied by DSE. This interface may be taylored 
to a user's particular needs and in essence each user has his or her own inter 
face to the DSE. Commands are interpreted at the next lower level in the system. 
These commands invoke any combination of the lowest-level components of the 
+em. These lowest-level components are: 

- Stmcture file 

- Panel Primitive13 - Text / Graphics Editor 

- OBMS 

The Structure File is the internal data structu~e that reflects the structure of a given 
document. In most cases, this sbucture will be hierarchical. The DBMS ia used 
for archival of document Templates and the data associated with particular + 
uments. Panel Primitives are the software packages in the DSE which perform 
the necessary mappings between the Structure File and a particutar CRT or 
workstation. Finally, the Text I Graphics Editor is the means by which a user 
enters data (text and digitized p p h ' m l  objects) into the DSE. 

2.3 Bask Terminology 

Below are listed the definitions of terms defined in the Document Stucture 
Editor Several of the terms defined below are illustrated by Figure 2 Fgure 2 
is an example of a document or Template stored in the DSE. ft should be noted 
that the document is divided into parts, which are further divided into chapters. 
which in turn are divided into sections. This structure ia typical of most technical 
wrrting and IS easily developed and stored by the DSE 
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Topic The atomic unit of a document. A Topic consists of a 
Heading and a bdy.  In actual documents, a Topic may 
be thought of as a generic term for parts, chaptere, 
sections, and wbsections. 

Heading This is a line of text that comes at the top of a Topic. 
A Topic must have a Heading. In a real document, 
a Heading may be a title, the name of a chapter or 
the like. 

Level 

Depth 

The Body is the content portion of a Topic. A Topic 
does not need to have a Body (ahhaugh the DSE 
reserves space for a Bocly in every Topic). 

The Level of a Template is how far up or down in a 
document's hierarchical sttucture you are. For ex- 
ample, the title d a textbook is its 0th Level, the parts 
are its 1st Level, the chapters are its 2nd Level, the see 
tbns are its 3rd Level, the subsections are its 4th Level 
and so on. 

Given a Level, how many Levels are contained with 
in it. If we talk about a document (or Template) that 
has a title, chapters, and sections, the Depth of the 
Level that corresponds to the title is 3 (you include 
the Level you are loding et). 

Breadth The Breadth of a Level is how may Topics are cow 
Mined within that Level. In other words. i f  Template 
has five chaptere and the Level being considered is 
that which corresponds to chapters, that Level has 
a Breadth of 5. 

Template This is the sum total of all the Topics and their assgned 
Levels-the total document under development. 
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Menu 

Prof ita 

Command 
-Line 

A Menu is a special Command available to u s m  of the 
DSE. Menu is used to build selection menus and may 
be invoked by a Profile or a User-Defined Command. 

h f i l e s  are user-written files that consist of DSE com- 
mands and systemrelated commands. A profile is ex- 
ecuted when the DSE system is entered at (or enters) 
some particular point. For instance. when a user bgs 
on the sytem. the User Profile is immediately executed. 

The typinqin of DSE or User Commands is pertormed 
on a space on the terminal screen called the Command 
L h n & ~ R f N h ~ ~ ~  ?&fhfB$hWOc#RtGSfM€de@ C, 

ae Line Commands 

- 

the Level yauare-laaktng et) 

Breadth 

Breadth 

The Ekeedth 01 e Level 4 how may Topics ere con- 
e , , - .  ,f ,d,rtF4,. t l .  * t  8. , I .  1 I,-. , . t k  2.). !,'-,?..le f f  TpP.Pl,*f( 

The Breadth of a Level ts how may Topica are con- 
Mined within that Level. In other words, if Template 
hae five chapters and the Level being considered is 
that which corresponds to chapters, that Level has 
a Breadth of 5. 

Template This is the sum total of all the Topics and their amgned 
Levels-the total document under development. 
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Menu 

Profile 

Cammand 
-Line 

Command 
-User 

Commmd 
-General 

Scroll 

DSE 

A Menu is a specie1 Command available to U S m  of the 
DSE. Menu is used to build selection mews and may 
be invoked by a Profik or a User-Defined Command. 

Profiles are user-written files that consist of DSE corn- 
mands and systemelated commands. A profile i8 ex- 
ecuted when the DSE system is entered at (or entera) 
some particular point. For instance, when a user logs 
on the sytem, the User Profile is immediately executed 

The typiwin of DSE or U s e r  Commands is pertormed 
on a space on the terminal screen called the Command 
Line. Commands entered in this fashion RE referred TO 
as Line Commands. 

A User Defined Command is similar to a Profile, except 
that a User Defined Command may be invoked anywhere 
in the system a Command Line is available. The User 
Command consrsts of DSE and hast system commands 
and is assigned a name by the user who writes it. 

Commands are the means by which a user tells the 
DSE what to do. Commands are the basis for the inter 
face between :he user and the DSE system 

Scrolling a Template is a feature of the DSE that allows 
a user to view a Template as one continuous piece of text 

Software that converts DSE or User Commands into 
inatNctiona that the host computer understands 
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StNcture 
File 

Currency 

Command 
-Key 

A file that containa the Level information and hence the 
Structure of a Template. tt is defined here for the purpose 
of completeness. 

The DSE "knows' what template or topic or whatever you 
might be mfening to by keeping Current values for such 
items. The currency is usually set using some Select 
command. 

A Key Command is an association (or mapping) between 
a short key sequence and a DSE or User Command. These 
associations are defined in a Profile and the last Profile 
executed takes precedence over any previous Profiles 
with r m  to these Key Command definitions. 

3. Related Efforts 

In many respect&, storing the associated structure of a given document 
is the logical next step for word processing software packages. Several com- 
mercial packages have structure editing capabilities These packages gep 
erally fall into one of two categories' 

- Automatic Indexers - Outliners 

Automatic indexing software usually is available as an option to many popular 
word processors Outliners. on the other hand, have outlining of documents as 
their primary purpose wrth limrted word processing capabilities Such packages 
run on microcomputers exclusively In addrtion. the integration of the compo- 
nents of these packages m questlonable (201 
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DEC Ada* Interface to Screen Management Guidelines ( SMG 1 

Somsak Laomanachareon 
Dr. Anthony A .  Lekkos 

University of Houston, Clear Lake 

INTRODUCTION 

DEC's Screen Management Guidelines are the Run-Time 
Library procedures that perform terminal-independent screen 
management functions on a VT100-class terminal. These 
procedures assist users in designing, composing, and keeping 
track of complex images on a video screen. 

There are three fundamental elements in the screen 
management model: the pasteboard, the virtual display, and 
the virtual keyboard. The pasteboard is like a two- 
dimensional area on which a user places and manipulates 
screen displays. The virtual display is a rectangular part 
of the terminal screen to which a program writes data with 
procedure calls. The virtual keyboard is a logical structure 
for input operation associated with a physical keyboard. 
Other features included in SMG are input and outpuc 
operations, control of asynchronous actions, optimizing 
performance, and many more. 

SMG can be called by all major VAX languages. Through 
Ada, we use predefined language Pragmas to interface with 

and Pragma SMG. They are Pragma Interface 
Import-Valued-Procedure. In association with these Pragmas, 
we also used the three other predefined packages: System, 
Condition-Handli.ng, and Starlet. With these predefined 
Pragmas and packages, we can put together another package 
that contains all the procedure calls to SMG which allow Ada 
application programs to access the SMG. 
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The Screen Management procedures provide terminal 
independence by allowing user to perform all screen 
functions without concern for the type of terminal being 
used and i f  the terminal being used does not support the 
requested function in hardware, the Screen Management 
procedures perform the requested function by emulating it in 
software. The important aspect of the Screen Management 
Facility is the separation of user programs from the 
physical device. For example, the user program writes to the 
virtual display instead of the physical screen. The 
separation of virtual operations from physical operation 
allows the terminal-independent aspect to be realized. 

Working with the SMG involves three fundamental 
elements in the screen management model. First, a pasteboard 
is always associated with a physical device. A pasteboard 
can be either smaller or larger than the physical screen, 
but each output device can have only one pasteboard 
associcated with it. A pasteboard can be thought of as a 
logical coordinate system where position(1,l) corresponds to 
the upper left-hand corner of the screen. With this 
coordinate system, the virtual display, described later, can 
be placed anywhere and it may be partly visible on the 
physical screen. 

Second, a virtual display is a rectangular part of the 
terminal screen to which a program writes data and 
text. When a virtual display is associated with a 
pasteboard, it is said to be pasted. When the display is 
removed from a pasteboard, it is said to be unpasted. To 
make a virtual display visible, you have to paste to a 
pasteboard. Your program can create and maintain several 
virtual displays and each display can be pasted to more than 
one pasteboard at the time. 

Third, a virtual keyboard is a logical structure for 
input operation associated with a physical keyboard or it 
maybe associated with any file accessible through Record 
Management Services(RMS1. The advantage of using virtual 
keyboards is device independence. The Screen Management 
procedures maps the different of code seqnrnces into a 
uniform set of function codes. 

All the attributes associated with pasteboards, virtual 
displays, and virtual keyboards that your program created 
can be modified and maintained at all times. A virtual 
display can be pasted, unpasted, and moved around a 
pasteboard. Input and output of each virtual display is 
independent of each other. 
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Text can be added, inserted, and deleted from a virtual 
display. Their video attributes can also be altered. The 
cursor position on a virtual display can be requested or set 
to any position on the virtual display. 

cursor position on a virtual display should not be 
confused with the physical cursor position on the screen. 
Although each virtual display has an associated virtual 
cursor position, only the cursor position on the most recent 
modified virtual display corresponds to a physical cursor. 
Line drawing capabilities and control of asynchronous events 
are also provided as well as support of Non-DIGITAL 
terminals. 

The 

SMG can be called by a13 major VAX languages. In Ada, 
predefined language Pragmas are used to interface with SMG. 
Pragma Interface which allows Ada program to call subprogram 
written in another language. A Pragma Interface has the 
follszoing form 

Pragma Interface (language-name, subprogram-name); 

Together with Pragma Interface, the Pragma 
Import-Valued-Procedure is specially designed for calling 
system routines. System routines return status values using 
the same parameter-passing as Ada uses for returning 
function results. Some system routines also cause side 
effects on its parameters. Ada treats a routine that 
returns a result as an Ada function, but a function with IN 
OUT or OUT parameters is not legal in Ada. Pragma 
Import-Valued-Procedure allows such a routine to be 
interpreted as a procedure in an Ada program, and as a 
function in the external environment. Note that the first 
parameter of the imported procedure must be an OUT parameter 
passed value. The value is returned as function value. The 
other parameters call be specified with the mode IN, IN OUT, 
or OUT, according to the service routine parameters. For 
example : 

with System, Condition-Handling; 

package SMG is 

procedure Create-Pasteboard 
(Status : out Condition Handling.Cond-Value-Type; 
Pasteboard-Id : out Integer; 
Output-Device : String :=  String'Null-Parameter; 
ROWS, Colmns : Integer :=  Integer'Null-Parameter; 
Screen-Flag : Boolean :=  Boolean'Null-Parameter); 
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pragma Interface (SMG, Create-Pasteboard); 
pragma Import-Valued-Procedure 

procedure Create-Virtual-Display 

Rows, Columns : Integer; 
Display-Id : out Integer; 
Display-Attribute, 
Video-Attribute, 
Char-set : System.Unsigned-Longword 

pragma Interface (SMG, Create-Virtual-Display); 
pragma Import-Valued-Procedure 

(create-Pasteboard, ttSMG$CREATE-PASTEBOARDRD"); 

(Status : out Condition-Handling.Cond-Va1ue-me; 

:= System.Unsigned-Longword"ull_Parameter); 

(Create-Virtual-Display, llSMG$CREATE-VIRTUAL_DISPLAY"); 

... ... ... ... ... Other procedures ... ... ... ... ... 
end SMG; 

From the example above, the package System provides 
types and operations for manipulating system-related 
variables and parameters. The package Condition-Handling 
provides VAX Ada types for VAX/VMS condition values as in 
the above status parameter which is returned by a system 
routine. Another package, not shown, is Starlet which 
provides VAX Ada type, VAX Ada constants for symbol 
definitions, and VAX Ada operations for calling system and 
RMS services. The package Starlet is specially useful in the 
application program which calls procedures in the SMG 
package that use symbol definition, for example: 

with SMG, System, Condition - Handling, Starlet; 
procedure Screen is 

Status : Condition-Handling.Cond-Va1ue-Type; 
Screen-1 : Integer; . . .  ... ... ... 

begin 
... ... 

. . .  ... ... . . .  ... ... 
SMG.Create-Virtual-Display 

(Status, 
Rows => 7, 
Columns => 70, 
Display-Id => Screen-1, 
Video - Attribute => Starlet.SMG-M-REVERSE); 
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e . .  ... ... ... 
end Screen; 

... ... 
As shown in the example, all oatput in the virtual 

display named Screen-1 will be in the reverse video. 

With these packages and pragmas, we can put together a 
package which contains all the Screen Management procedures 
that we need. Then Ada application programs can use this 
Screen management package to create and manage application 
screens. 
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r f  A PROPOSED CLASSIFICATION SCHEME FOR ADA-BASED SOFTWllRE PRODUCTS 

Gary J. Cernosek 
McDonnell Douglas Astronautics Co. 

16055 Space Center Blvd. 
Houston, Texas 77062 

(713 )  280-1500 

- Houston 

1.0 UTROUCTIU 

As the requirements for producing software i tho Ada* lan iage 
become a reality for projects stach as the Space Station, a great 
mount of Ada-based program code will begin to emerge. Although 
this software will exist in Ada source code form, it will display 
varying degrees of quality based on the manner in which it was 
developed. In spite of the fact that Ada supports the most 
modern and effective concepts of programming available, poorly 
written programs can be created in Ada just as they have been in 
previous languages. 

Consequeatly, the term "written in Ada" could have many 
connotations. The mere fact that a program exists in Ada source 
code form does net imply to any degree that there is any more 
quality in that product than would be if it were written in 
FORTRAN or C. If the modern features of the Ada language are nnt 
utilized to support the principles of software engineering, then 
the entire motivation and justification for moving to the Ada 
language will be defeated. 

Recognizing this potential f0.r varying levels of quality to 
result in Ada programs, what is needed is a classification scheme 
that describes the quality of t i  software product whose source  
-ode exists in Ada form. This classification assessment would be 
bassd on the overall process in which the software was developed, 
as well as the characteristics and attributes associated with t21e 
resulting source :ode produced. This provides an "after the 
fact" evaluation, and thus will not directly support proper 
development. However, the knowledge of the classification sc 'ht 'n i t '  
may help in deterring bad development approaches and indirectly 
increase the overall quality consciousness of Ada-based software. 
development. 

This paper proposes a 5-level classification scheme that atten1;St: 
to decompose this potentially broad spectrum of quality of whi\.!. 
Ada programs may possess. The numbcr of classes and their 
corresponding names are not as important as the mere facT; t h a t  
there needs to be some set of criteria from which to evaluate 
programs existing in Ada. An exact criteria for each class i : >  
nc?, presented in the paper, nor are any detailed suggestion? I.j! 

_Low t,o effectively implement this quality assessment. The p a p c . : .  
is merely intended to introduce the idea of Ada-based soft,w,ir-c- 
classification and to suggest a set of requirements from which L,., 
bass further research and development. 

* Ada is a trademark of the U. S. Government (AJPO) 
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2.0 

The purpose of the Ada language can be viewed from two 
perspectives. Technically, Ada was designed to strongly support 
the goals and principles of software engineering. However, the 
main influence driving the definition of Ada was economical. The 
"software crisis" was recognized in the early 1970's and the 
major cost factors were identified in software maintenance 
activities. Therefore, Ada was designed to give the potential 
for reducing software costa, Cost reductions start by providing 
a common language that consequently requires less compiler 
development and less programmer re-training. And as the amount 
of Ada code developed increases, the re-use of verified software 
components can further decrease development expenses. 

Since the  discipline of software engineering focuses on both 
technical and economic issues, the Ada language must be used as a 
software engineering tool and not merely as another programming 
language. Ada will not automatically meet its purpose and goals 
- it has to be used as it was designed to be used. 

Therefore, it is unrealistic to expect that all software projects 
developed in Ada will realize the many benefits that the language 
has to offer. This is true not because the language is 
deficient, but rather because there are many different approaches 
to using any language. Several reasons why Ada may n o t  be 
properly used on initial projects are outlined below: 

Technical - The education and training required to learn 
how to effectively use Ada may be significant, 
especially for individuals ..rithout previous exposure to 
higher-level languages. Ada quality may suffer by 
having improperly trained personnel pre-maturely work on 
Ada development efforts. 

Economical, - The initial costs involved in moving to any 
new language are high. This characteristic may drive 
decision makers to short-term solutions, such as code 
translation approaches. 

Political - Many organizations feel they are "locked" 
into a particular programming language, and often the 
machines that run their software. Even when Ada is 
shown to be technically superior and actually cost- 
effective, political influences can stifle attempts to 
upgrade an outdated software development environment. 

Inertia 1 - It is only natural for organizations to be 
reluctant to change. Ada, as well as other advances in 
computer engineering such as distributed processing, may 
intimidate people who feel more comfortable with their 
prc-sent .  environment. This natural state of inertia 
:,hould be accepted and effectively dealt with rather 
t .han be a front line for personal hattles. e 
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With these issues and many more to contend with, it is obvious 
that most organizations will have to transition into an Ada 
environment. As this transition is taking place (and possibly 
thereafter), a varying degree of quality must be expected to 
result among different development efforts. One way to measure 
the progress of transition is to classify the quality of the Ada 
software resulting from these efforts. The goal must be set to 
produce only the highest level of quality in Ada software. 
However, the reality must be recognized that it will be difficult, 
to meet this goal in initial projects. 

The suggested approach is to get started with Ada and do the best 
job possible under whatever circumstances may exist. The 
previously described road blocks should not prevent the 
exploration of Ada. However, the learning curve must be steep 
and be based on good sources of Ada training and education. Plr~c~r. 
development habits must be broken and good ones must be created 
and enhanced. And most importantly, engineers and managers h a v e  
to encourage the training and use of Ada. Without both peer- 
level and management support, effective transition to Ada will tx- 
difficult. 

The most important theme to understand and constantly keep in 
mind is that the basis for "good" and "bad" rest. in the goals a r i d  
principles of software engineering. Software engineering 
represents the stable point of professional programming that C3r.i 

separate quality standards from personal style and allows 
concentration on issues above the language level. 

Therefore, in order to measure the progress of transitioning t1.b 

Ada, a software engineering-based classification method is 
needed. This is also in accordance with the DOD-STD-2167 
Software Documentation Standard, which has changed the emphasis 
on Quality Assurance to Quality -ation . 
classification scheme for evaluating Ada software quality is 
presented in the next section. 

A proposed 
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3.0 W s I F I W O N  m H O D  AND C- 

Each of the classifications below are described with the 
following format: 

0 Classification level number: 5 (lowest) to 1 (highei-t) 

0 Development Process Statement - phrase that references 
tho approach taken in development: 

00 Level 5 - "Translated To Ada" 
00 Level 4 - "Coded In Ada" 
00 Level 3 - "Programmed In Ada" 
00 Level 2 - "Designed Into Ada" 
00 Level 1 - "Engineered With Ada" 

0 Description of the process in which the program source code  
was created 

0 Characteristics and attributes indicative of the 
particular level of quality 

Level 5 - "Translated T o Ada" 
This lowest class of Ada software implies nothing more than the 
fact that the program code exists in Ada form. The Ada code is 
created by some type of code translation, either through a manual 
and direct mapping performed by a human coding specialist, or by 
an automated code translator. Level 5 classification is intended 
for programs that have been previously developed in another 
language and have been converted to Ada merely to meet a 
requirement for the software to exist in Ada. However, programs 
that have been properly re-structured or re-designed into Ada 
have potential for a higher quality assessment. 

The characteristics of Level 5 software include significant 
maintenance problems due to lack of readable and understandable 
code. None of the aesthetic qualities of the Ada language are 
evident due to the absence of human engineering. Additionally, 
the overall program structure i5 characteristic of the original 
language's form and represents the most inappropriate and 
ineffective use of the Ada language. A possible exception to 
this evaluation is when an organization wants to escape the 
previous language environment and allow 100% of its future 
development and maintenance in Ada. 

Level 4 - "Coded In Ada" 

Although Level 4 programs arc humanly written in Ada, they lack 
t h e  basic quality characteristics possible in good Ada programs. 
The development process is generally based on program development, 
personnel that are not properly trained in utilizing the Ada 
langzage and its support environment properly and effectively. 
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The approach to development is ad hoc with no basis on formal 
software requirements definition and no documented design 
Process. Level 4 developers incorporate coding semantics of 
other languages into their Ada programs that are inappropriate to 
Ada. 

e 

I . 

Corresponding characteristics include abbreviated identifiers, 
unstructured control features, and lack of effective problem 
modeling and abstraction dt1.e to the absence of appropriate data 
structures. Overall program design lacks modularity, utilizes 
excessive amounts of global data structures, and fails to control 
visibility of objects with the information hiding techniques of 
package structuring. The characteristics of Level 4 software 
defeat the purpose of requiring the Ada programming language for 
program development. A possible exception here is to allow 
developers to get started with Ada for hands-on training. 
However, in this case, developers must learn proper Ada structure 
very quickly. 

Level 3 - ronrammed In Ada" 

Level 3 represents the lowest acceptable criteria for justifying 
the existence of software in Ada form. The developers are 
properly trained in the basic principles of the language and know 
how to effectively utilize its features for developing readable 
and maintainable software. The software requirements are known 
and understood with a significant amount of pre-implementation 
thought going into the design of the program structure. 

Level 3 programs have meaningful identifier names, use only 
structured programming constructs, and accurately model real- 
world objects with appropriate data structures. Program 
structure is highly modularized with inter-module coupling 
minimized and internal module structure strongly cohesive. 
Packages are properly used to support principles of information 
hiding, object encapsulation, and abstract data types. 
Visibility of objects is strongly controlled, data is strc.ngly 
typed, and use of global objects is strictly limited. 

Level 2 - DesAgned In to Ada" 

This level of quality concentrates on issues above the 
programming language level. A software design approach is 
adopted to properly define the structure of the modules of the 
software system independently of the implementation details of 
the target programming language. One or more design 
methodologies may be used to create consistency and reliahilit,y 
in the program structure. Since Ada directly supports the 
principles of good software design, an Ada-based Program Design 
Language (PDL)  is very appropriate. However, the main idea is 
that the software system is specified and verified to a large 
degree prior to the implementaton phase, at which point problenls 
a n d  errors are much more costly to correct. 
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The main characteristic of Level 2 software is that the overall 
software system design displays a very understandable structure 
that allows reliable modifications and enhancements. Software 
design documents are produced as deliverable products prior to 
Program source code development. 
supported by automated tools that help verify interface 
consistency and requirements completeness. The actual source 
code programs resulting from the software design display all of 
the quality attributes associated with Level 3 software. 
Consequently, Level 2 software is more reliable, understandable, 
and more easily adapted to new applications. 

e 
The design methodologies may be 

bevel 1 - n w e r e d  With A d c  

This classification corresponds to the highest degree of quality 
possible in Ada-based software. The software is created with a 
comprehensive software life-cycle approach by developers who are 
well trained and knowledgeable in the goals and principles of 
software engineering. The main emphasis in the process is in the 
distinction between the problem domain and the solution domain of 
the computer-based solution. The requirements analysis phase of 
development is utilized to fully understand the problem space and 
to determine exactly wha2 the software is to do in the first 
place. A variety of methodologies and technologies may be used 
to ensure that valid requirements are specified up front and that 
the associated costs and risks are reduced. The analysis phase 
may include utilization of techniques such as rapid prototying 
and higher-level applications generators for defining and 
refining user interface and system requirements, and for 
generating feedback from the user community. The remaining 
phases of design, implementation, testing, and debugging are all 
in the solution space of the development process and are 
concerned with how to meet the requirements specification. 
Software that is engineered with Ada strongly supports the goals 
and principles of software engineering. Analysis is the main key 
to understanding which components of the software design actually 
n e e d  to be developed from scratch and which ones can be satisfied 
by existing reusable components. A very coherent and useable set; 
of documentation is produced in the engineering process relating 
to the various phases of the life cycle, a s  well a5 documentation 
applicable to all phases of development. The concept of a 
project data or object base is realized and implemented for 
accurate control and accountability of personnel, products, and 
organizational information. Automated support tools are 
effectively utilized throughout all forms of development to 
increase productivity, support proper and disciplined 
development, and to reduce the manual effort required from 
software developers. And finally, an intense concern for 
maintainability is prevalent throughout all decision-making and 
phases of development. 
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It is difficult to assess the quality of Ada code that is 
automatically generated from a higher level of specification. 

quality rests in the question of what level of specification will 
the software be maintained at. If it is strictly at the higher 
level of requirements or design specification, then the actual 
source code generated will not be visible to the human progammer, 
and thus its structure will not be of great significance. 

human analysis and subsequent modification, then the level of 
quality will be directly related to the same factors associated 
with well-engineered and manually-written Ada programs. 

Therefore, in this latter case, the attractive process of 
generating Ada source code from a higher level of specification 
must be designed such that the corresponding characteristics and 
attributes associated with the resulting code coincide with those 
indicative of well-written Ada software developed directly by a 
hurr.9 programmer. The degree of quality associated with the 
hia.er-level specification will consequently be based on the 
degree to which the automatically generated code displays the 

However, if the resulting Ada code will be subject in any way to 

good human engineering principles needed for understandable and 
maintainable software. 

0 
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The usefulness of tho preceding classification scheme for Ada- 
based software is highly dependent on a more precise and tangible 
definition of criteria for each class. Although this level of 
detail was not given, the taxonomy proposes a starting point from 
which to base futher analysis. The main idea of the paper is to 
create an awareness of the potential problems to expect When 
transitioning to a new programming language such as Ada. The Ada 
language alone cannot solve the problems currently prevalent in 
large organizations such as NASA in which software costs are a 
significant portion of the budget. Ada, and its corresponding 
support environment, merely provide the best available set of 
tools which support and encourage the adherence to the provcn and 
solid principles of software engineering. 

The mandate for the Space Station Program to move into the "Ada 
culture" will be totally ineffective if engineering principles 
and corresponding methodologies are not properly utilized. 
Obviously, education and training will be essentia!. for 
developing a smooth transition into the software engineering 
discipline. The spectrum of potential Ada software quality 
classes presented here can help create and maintain the awareness 
and importance of viewing software engineering as a true 
engineering discipline. This recognition will be essential for 
the success of the up-coming proliferation of Ada-based software 
projects in the Space Station Program. 0 
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There a r e  c u r r e n t l y  n o  b e t t e r  cand ida tes  f o r  a coo rd ina ted ,  low r i s k  
s y n e r g e t i c  approach t o  s o f t w a r e  development t h a n  t h e  Ada programming 
language and t h e  a s s o c i a t e d  environment work. Developed i n  P a r i s  i n  t h e  
mid ~O'S, Europe has developed c e n t r e s  o f  e x c e l l e n c e  o n  t h e  a s p e c t s  
o f  Ada technology,  and t h e  i nd igenous  i n d u s t r y  i s  now e x p e r i m e n t i n g  
w i t h  a p p l i c a t i o n s .  Some 2M l i n e s  o f  Ada code e x i s t  a l r e a d y  i n  use. 

The a im o f  t h e  p r e s e n t a t i o n  would b e  t o  b u i l d  on a paper  p r e p a r e d  f o r  
t h e  May 1985 P a r i s  Ada conference based on an e x t e n s i v e  survey o f  
t h e  p e n e t r a t i o n  a c h i v e d  by Ada. Fur thermore t h e r e  would b e  a summary 
o f  t h r e e  major  a c t i v i t i e s  i n  Europe i n t h e  month o f  May 1986 - 
- t h e  2nd Ada Users  Congress - t h e  4 t h  Ada Europe/SIGAda JT Conference i n  Ed inb rugh  - A survey on T o o l s  p u b l i s h e d  about then. 

The n a t u r e  o f  a p p l i c a t i o s n  suggest t h a t  more d e t a i l s  w i l l  be a v a i l a b l e  
i f  o n l y  a b s t r a c t s  a r e  pub l i shed ;  as domains o f t e n  l i e  i n  s e n s i t i v e  
areas o f  an o r g a n i  sa t  i o n s  a c t i v i t i e s .  

Space i s  o f  p a r t i c u l a r  i n t e r e s t  to  t h e  EEC, who suppor t  c i v i l  a p p l i c a t i o n : ;  
and some Ada r e s e a r c h  and development. T h i s  a rea  i s  i d e a l  f o r  t e s t  Deda in i :  
Ada,as Ada can b r i d g e  d i f f e r e n t  approaches t o  p r o b l e m  s o l v i n g  by u s e  o f  
i t s  p o r t a b i l i t y .  

F i n a l l y ;  t h e  " s o c i a l "  i n f r a s t r u c t u r e  o f  Ada R and D i n  Europe w i l l  b e  
summarised. 

M W Rogers 

Arpanet : mrogers a t  USC-ISIF 
Adakom : m w r c 
Eurokom : Mike W R 
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1.  INTRODUCTION 

S o f t w a r e  w i l l  be more i m p o r t a n t  and  more c r i t i c a l  f o r  COLUMBUS t h a n  f o r  
a n y  ESA p r e v i o u s  p r o j e c t .  A s  a s i m p l e  Comparison,  o v e r a l l  s o f t w a r e  size 
h a s  been i n  t h e  r a n g e  of 100 K s o u r c e  s t a t e m e n t s  f o r  EXOSAT, 500 K f o r  
SPACELAB w i t h  IPS ,  and w i l l  presumably r e a c h  s e v e r a l  m i l l i o n s  l i n e s  o f  
c o d e  f o r  COLUMBUS ( a l l  e l e m e n t s  t o g e t h e r ) .  

Based on p a s t  e x p e r i e n c e ,  t h e  t o t a l  development  c o s t  of s o f t w a r e  
( f a c i l i t i e s ,  s i m u l a t i o n ,  t es t  items, on-board s o f t w a r e . .  .)  c a n  a c c o u n t  
for a b o u t  10 t o  15 % of t h e  t o t a l  s p a c e  p r o j e c t  development  c o s t .  For  
COLUMBUS, t h i s  s h a r e  vi11 grow o v e r  t h e  e n t i r e  s p a c e  s y s t e m  l i f e  c y c l e  
as  ma in tenance  and  e v o l u t i o n  v i 1 1  be v i t a l  w i t h i n  I t s  v e r y  l o n g  o p e r a -  
t i o n n a l  p h a s e .  C o n s i d e r a b l e  s a v i n g s  w i l l  be p o s s i b l e  by p r o p e r l y  m n d -  
g i n g  s o f t w a r e  and by e x p l o i t i n g  f i e l d s  of commona l i ty .  

The Ada t e c h n o l o g y  may s u p p o r t  t h e  s t r o n g  so f  tware e n g i n e e r i n g  p r i n c  i -  
p l e s  needed f o r  COLUMBUS, p r o v i d e d  t h a t  t e c h n o l o g y  is s u f f i c i e n t l y  ma- 
t u r e  and  i n d u s t r y  p l a n s  a r e  mee t ing  t h e  COLUMBUS p r o j e c t  s c h e d u l e .  

Over t h e  p a s t  t h r e e  y e a r s ,  I n f o r m a t i q u e  I n t e r n a t i o n a l e  h a s  c o n d u c t e d  a 
c o h e r e n t  programme based on  Ada t e c h n o l o g y  a s s e s s m e n t  s t u d i e s  and  expe -  
r i m e n t s ,  f o r  ESA and CNES as  i n d i c a d e d  I n  f i g u r e  l .  

T h i s  s p e c i f i c  r e s e a r c h  and development  programme b e n e f i t s  f rom 
I n f o r m a t i q u e  I n t e r n a t i o n a l e  f i f t e e n  years e x p e r i e n c e  i n  t h e  f i e l d  of 
s p a c e  s o f t w a r e  development  and is s u p p o r t e d  by t h e  o v e r a l l  s o f t w a r e  
e n g i n e e r i n g  e x p e r t i s e  of t h e  compagny ( e . g  deep  invo lvemen t  In t h e  e u -  
r o p e a n  ESPRIT and HAP programmes).  

( R )  ADA i s  a r e g i s t e r e d  t r ademark  of t h e  US Department  of Defense  
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2. ADA TECHNOLOGY ASSESSMENT PROGRAMME 

The logical construction of the space station oriented Ada technology 
assessment programme appears in figure 1. Four main layers may be dis- 
tinguished : 

a) Ada development environments procurement policy (Rolm ADE and Verdix 
VADS), set up of convenient methods and development of new tools : 

GET, a tool for automatic production of interactive test environ- 
ments for Ada packages. 

SOPHIA, an advanced syntax-directed editor for Ada designed to 
operate on advanced work stations and providing features for ad- 
ding new functionalities (e.g. static or dynamic analysis of 
programs). 

b) Ada space specific experiments €or CNES and ESA aiming at a rather 
broad investigation (e.g. ground and space segments) : 

ADEXII, a two years experiment and assessment project undertaken 
for CNES (100 man-months budget over 83-85) with following main 
tasks based on careful monitoring of the activity : 

. Assessment of the Ada language with respect to training, effec- 
tive use and degree of applicability 

. Assessment of the Ada environment and resulting Ada products 

. Production of guidelines for an efficient transition to Ada. 

ESA/ADA, one year experiment conducted for ESA in 84-85, aiming at 
the Ada development of a coaplete simulation of the GIOTTO space- 
craft Attitude and Orbit Control System from an existfng Fortran 
program. The organization of the project based on partial and pa- 
rallel development by INFORMATIQUE INTERNAYIONALE, CESELSA 
(sub-contractor) and ESA itself successfully demonstrated unique 
features and suitability of the Ada language for large space pro- 
jects (signif iciant guidelines on an Ada development methodology 
have been established). 

CCSDS, six months project conducted for CNES in 85 demonstrating 
the successful use of Ada as a data description and data handling 
language for the GALILEO spacecraft telemetry (modelling and pro- 
cessing according to the international CCSDS standards). 

c) On-board Data Management System (COLUMBUS class) feasibility studies 

- ESA/OBCA, comparative study on distributed microprocessor based 
computer system architectures 

- ESA/I{OL, a study of the applicability of High Order Languages f o r  
on-board software production (assessment and selection of the best 
candidate among Ada, Modula 2, C, LTR 3 ,  Pascal and HALIS). 
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d) Ada detailed assessment for COLUMEUS on-board distributed Data 
Management System. 

EbA/SSADA, two years project (start end 85) investigating three 
important issues : 

. availability ob Ada tooks (near and mid-term) for the develop- 
ment of distributed application software 

. links between Ada features (language and implementation) and 
specific requirements of a typical space station mission 

. specification and development in Ada of a study case software 
system (derived from space station requirements analysis) which 
can produce significiant insights on poverful model of future Ada 
software production environments. 

Ada assessment for 
space station on-board 
distributed DMS 

Prelimimary studies : 
On-board systems 
High Order Languages 
Data relay satellite 

Space specif ic 
Ada assessment 
(general scope) 

Environment 

CEC Programme ESPRIT PCTE / S O P H I A  
MAP TOOL'USE 

FIG. I. : INVOLVEMENT IN COLUMBUS SUPPORT TECHNOLOGY 
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3 .  PRESENTATION OF CNES AND ESA ADA EXPERIMENTS 

3.1 .  CNES A D E X I I  EXPERIMENT 

As p r e v i o u s l y  s t a t e d ,  Xnformatique Internat  i o n a l e  c o n d u c t e d  a n  Ada 
e x p e r i m e n t  f o r  t h e  f r e n c h  n a t i o n a l  s p a c e  agency  (CNES) i n  T o u l o u s e ,  
F r a n c e .  The e x p e r i m e n t  main o b j e c t i v e s  were to  p r o v i d e  i n f o r m a t i o n  on 
t h e  s u i t a b i l i t y  a n d  e f f e c t i v e  u s e  of  t h e  Ada l a n g u a g e  f o r  s p a c e  a P P l i -  
cat ions a n d  t o  l o c a t e  t h e  p o t e n t i a l  b e n e f i t s  and  p o s s i b l e  drawbacks t o  
be e x p e c t e d  when i n t r o d u c i n g  Ada i n t o  t h e  a e r o s p a c e  i n d u s t r y  
e n v i r o n m e n t .  

A s  s u c h  r e s u l t s  and  lessons learnt  c a n  c o n t r i b u t e  t o  a b e t t e r  u n d e r s -  
t a n d i n g  and  management o f  a s p a c e - o r i e n t e d  Ada t e c h n o l o g y  t r a n s f e r .  
E d u c a t i o n  and  development  methods were e s p e c i a l l y  d i s c u s s e d .  The expe-  
r i m e n t a l  d a t a  c o l l e c t e d  o v e r  t h e  p r o j e c t  have  been e x t r a c t e d  from a de-  
velopment  e f f o r t  of s i x  s o f t w a r e  e n g i n e e r s  o v e r  too y e a r s  w i t h  a t o t a l  
p r o d u c t i o n  of  30 000 Ada s o u r c e  l i n e s  (ASL). 

The e x p e r i m e n t  had t h e n  t o  c o v e r  two main a r e a s  : 

- i n t r o d u c t i o n  of  t h e  l anguage  ( i . e .  how i t  is used and l e a r n e d  i n  
p r a c t i c e  by p e r s o n n e l  w i t h  d i f f e r e n t  t e c h n i c a l  backgrounds )  

- s u i t a b i l i t y  of t h e  l anguage  f o r  a p p l i c a t i o n s  s p e c i f i c  t o  t h e  a e r o s p a -  
c e  i r r d u s t r y ,  p a r t i c u l a r y  r e a l - t i m e  a p p l i c a t i o n s .  

T h e s e  t o p i c s  were f u t h e r  r e f i n e d ,  a n a l y z e d  and b a l a n c e d  a g a i n s t  
t e c h n i c a l  Ada c o n s t r a i n t s  (ma in ly  l a c k  of i n f o r m a t i o n  and t r a i n i n g  o n  
Ada s o f t w a r e  e n g i n e e r i n g )  and t h r e e  e v a l u a t i o n  a r e a s  were d e f i n e d  : 

- l e a r n i n g  and u s e  of t h e  Ada l anguage  

- development  of Ada s o f t w a r e  p r o d u c t s  

- per fo rmance  a n d  a s s e s s m e n t  of  a v a l i d a t e d  Ada e n v i r o n m e n t .  

To r e a c h  t h e s e  g o a l s  w i t h i n  budge ta ry  c o n s t r a i n t s ,  i t  was d e c i d e d  t o  
r e d e s i g n  and r e d e v e l o p  e x i s t i n g  F o r t r a n  a p p l i c a t i o c s ,  meanwhile monito-  
r i n g  r e l a t e d  a c t i v i t i e s .  These a p p l i c a t i o n s  c o r r e s p o n d i n g  t o  s m a l l -  
s c a l e d  p r o j e c t s  v e r e  p r e f e r r e d  t o  a s i n g l e  l a r g e  r e a l - t i m e  p r o j e c t ,  due 
t o  t h e  h i g h  r i s k s  impl i ed  by such  a c h o i c e  a t  t h e  time t h e  p r o j e c t  
s t a r t e d .  P r e v i o u s  p a p e r s  ( L a b r e u i l l e  84 and P a p a i x  85)  g i v e  a n  in -dep th  
d i s c u s s i o n  of  t h e  p r o j e c t  t a s k s  and t h e  r e s o u r c e s  i n v o l v e d .  

Wlth r e s p e c t  t o  t h e  i n i t i a l  o b j e c t i v e s ,  t h e  f o l l o w i n g  c o n c l u s i o n s  were 
r e a c h e d  : 

P r o d u c t i v i t y  

High p r o d u c t i v i t y  r a t i o s  have been e x p e r i e n c e d  ( u p  t o  1400 ASL per man- 
month f o r  s m a l l  Ada deve lopmen t s )  but  t h i s  d a t a  s h o u l d  be i n t e r p r e t e d  
w i t h  c a r e  and b a l a n c e d  a g a i n s t  a r e a l  i n d u s t r i a l  c o n t e x t .  I n  t h i s  expe-  
r i m e n t  c o n t e x t ,  t h e  development team was s m a l l ,  m o t i v a t e d ,  e n t h u s i a s t i c  
and  e x p e r i e n c i n g  t h e  l e a r n i n g  p r o c e s s  and t h e  u s e  of  Ada and program- 
ming env i ronmen t  t o o l s .  
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More than  t h e  achievement of good p r o d u c t i v i t y  f i g u r e s  ove r  t h e  pro-  
j ec t  , t h e  i d e n t i f i c a t i o n  of  t h e  main c o n t r i b u t o r 0  t o  p r o d u c t i v i t y  i m -  
provements were po in ted  ou t  : 

- early v a l i d a t i o n  through t h e  use  of Ada a t  t h e  des ign  phase 

- automatic r ecompi l a t ion  f e a t u r e s  suppor ted  by convenient  conf igu ra -  
t i o n  c o n t r o l  system 

- r e u s e  of so f tware  components 

T r a i n i n g  

Th i s  experiment  has  proven t h a t  accep tab le  l e v e l  of p r o f i c i e n c y  in Ada 
cou ld  be reached  r a t h e r  qu ick ly  ( i n  less than  a month). 
Ada, a s  a programming language is no more d i f f i c u l t  t o  l e a r n  than  ano- 
t h e r  language ,  but  making f u l l  use of i t s  unde r ly ing  so f tware  enginee-  
r i n g  p r i n c i p l e s  r e q u i r e s  some a d d i t i o n a l  e f f o r t .  Due t o  Ada r i c h n e s s ,  
s p e c i a l  t r a i n i n g  is  r equ i r ed  f o r  "good use" of advanced f e a t u r e s ,  a s  
w e l l  a s  t o  avo id  sys t ema t i c  use of " w e l l  experienced" s u b s e t .  

Environment 

The a v a i l a b i l i t y  of a number of t o o l s  i s  of g r e a t  h e l p ,  bu t  oneshould 
not  forger,  t h a t  l e a r n i n g  how t o  use them e f f e c t i v e l y  is almost  a s  i m -  
p o r t a n t  a s  l e a r n i n g  t h e  language i t s e l f  and t a k e s  time and e f f o r t  a s  
w e l l .  
Evidence vas  shown t h a t  an Ada compiler  must be a v a l i d a t e d  one ,  t o o l s  
must be of good q u a l i t y  a s  w e l l  and should be s u i t a b l e  f o r  t h e  develop- 
ment of l a r g e  Ada programs (more than 10 0C.O ASL).  

Development methodology 

Use of Ada impacts  heav i ly  on t r a d i t i o n a l  methods through : 

- e a r l y  and cont inuous  use  from des ign  

- e a r l y  v a l i d a t i o n  of des ign  through p ro to typ ieg  and s tep-wise PDL 
ref inement  

- des ign  e f f o r t  which is i nc reased  by up t o  50 X whi le  i n t e g r a t i o n  i s  
reduced up t o  5 times 

- e f f e c t i v e  p a r a l l e l  developement.  
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3.2. ESA ADA EVALUATION STUDY 

AS p a r t  of i t s  Techn ica l  Research Programme, i n  p r e p a r a t i o n  f o r  u s ing  
Ada, t h e  European Space Agency h a s  j u s t  completed a s t u d y  t o  e v a l u a t e  
t h e  u s e  of Ada i n  a t y p i c a l  space-or ien ted  so f tware  p r o j e c t ,  w i t h  par -  
t i cu la r  emphas is  on t h e  impacts  on METHODOLOGY and t h e  p r o s p e c t s  f o r  
PORTABILITY, REUSABILITY end developement s t  m u l t i p l e  s i t e s .  The s t u d y  
vas based on r e w r i t i n g  i n  Ada t h e  A t t i t u d e  and O r b i t  Con t ro l  So f tware  
and t h e  s i m u l a t i o n  of t h e  s a t e l l i t e  dynamics and o p e r a t o r s  environment  
of a r e c e n t  s a t e l l i t e ,  which were p rev ious ly  implemented i n Assembler 
and P o r t r a n .  

AS a r e s u l t  of t h i s  s t u d y ,  ESA has  now a set of Ada packages which has  
been used  to  e v a l u a t e  many of t h e  e x i s t i n g  Ada compi l e r s  and Ada s u p -  
p o r t i n g  t o o l s e t s  as r epor t ed  I n  (Robinson 86).  This  proved t o  be a va- 
l u a b l e  way of  I d e n t i f y i n g  some of t he  key a s p e c t s  f o r  p rov id ing  
p o r t a b l e  s o f t w a r e ,  and f o r  i d e n t i f y i n g  s t r o n g  and weak f e a t u r e s  of  
e x i s t i n g  and p o t e n t i a l  APSES. 

The s t u d y  p r o j e c t  was performed by Informat ique  I n t e r n a t i o n a l e  ( a c t i n g  
as  prime c o n s t r a c t o r )  and CESELSA (Spain)  under the  d i r e c t i o n  of ESA 
Technology Cen t re  (ESTEC) .  The main a c t i v i t y  was t o  r e w r i t e  i n  Ada 

a )  t h e  A t t i t u d e  and O r b i t  Cont ro l  Equipment (AOCE) soCtware of a r ecen t  
s a t e l l i t e ,  from the  e x i s t i n g  des ign  w r i t t e n  i n  Caine ,  Farber  Gordon PDL 
and t h e  l i s t i n g s  of t he  RCA1802 Assembler programs, 

b) t h e  s i m u l a t i o n  of t he  s a t e l l i t e  dynamics and o p e r a t o r s  environment 
which were p rev ious ly  implemented i n  F o r t r a n .  

The Ada program c o n s i s t s  of 6 components as  i n d i c a t e d  i n  f i g u r e  2 .  Tlie 
c o r e  of t h e  program is t he  package P-AOCE c o n t a i n i n g  t h e  s a t e l l i t e  
s o f t w a r e .  The R A M  is v i s i b l e  t o  provide  a c c e s s  t o  d a t a  f o r  o p e r a t o r  
d i s p l a y ,  and p a r t  of t he  RAM (T-RAMl) is a v a i l a b l e  t o  write telecom- 
mands. T h i s  package is embedded i n  a s imula t ion  of t he  r..al worid e n v i -  
ronment ,  c o n s i s t i n g  o f  telecommand management, hardware i n t e r f a c e ,  
dynamics s i m u l a t i o -  and o p e r a t o r  command/display i n t e r f a c e .  

ESA s t a n d a r d s  f o r  so f tware  l i f e - c y c l e  (ESA 84) were fol lowed t o  a s s e s s  
t h e i r  s u i t a b i l i t y  f o r  Ada. These c o n s i s t  of phases  f o r  so f tware  r equ i -  
r emen t s ,  a r ch f  t e c t u r a l  d e s i g n ,  d e t a i l e d  des ign  and implementa t ion ,  each 
phase t e r m i n a t i n g  i n  a formal r e v i e w .  F u l l  documentation vas  produced.  

T h e  So f tware  Requirements Document was wr i t t en  by Informat ique  
I n t e r n a t i o n a l e  t o  p u l l  t he  requi rements  t o g e t h e r  and a s  a f a m i l i a r i s a -  
t i o n  t a s k  t o  p rov ide  a c l e a r  d e f i n i t i o n  o f  t h e  work t o  be done. 

As an expe r imen t ,  two A r c h i t e c t u r a l  Designs were produced,  a t  both 
Xnformatique Znterna t  i o n a l e  and CESELSA. Each c o n s i s t e d  of n a r r a t i v e ,  
des ign  d iagrams and Ada S p e c i f i c a t i o n  p a r t s .  I n  a d d i t i o n ,  t he  ma j o r  
t a s k  s t r u c t u r e  was pro to typed  us ing  TEXT I O  t o  provide  a l i s t i n g  of t he  
f low of c o n t r o l ,  t hus  demonst ra t tng  t h a t  t h e  o v e r a l l  a r c h i t e c t u r e  is 
c o r r e c t ,  and t h a t  t he  s p e c i f i c a t i o n  p a r t s  were c o n s i s t e n t  and compila- 
b l e .  A f t e r  t h e  rev iew,  the  ADD which was based on Objec t  Or i en ted  
Design was s e l e c t e d  s i n c e  t h i s  provided t h e  more cohe ren t  and complete  
view of t h e  des ig i i .  I t  was decided t o  u s e  OOD on t h e  d e t a i l e d  des ign  of 
t h e  dynamics p a r t  in t he  next phase t o  g a i n  more expe r i ence  of t h i s  
t e c h n i q u e .  
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The D e t a i l e d  Design was a l s o  r epea ted  by t h e  tvo c o n t r a c t o r s ,  u s ing  t h e  
same a r c h i t e c t u r e  a s  a b a s e l i n e  f o r  each .  The main d i f f e r e n c e  was t h a t  
Informat ique  I n t e r n a t i o n a l e  decided t o  use SEPARATE compl l a t lon  ex ten-  
s i v e l y  i n  t h e  des ign  of  t h e  l a r g e r  packages.  Th i s  has  t h e  b e n e f i t  o f  
reducing  t h e  time f o r  recompi la t ion  due to  changes i n  on ly  one procedure  
d u r i n g  module t e s t i n g .  It results i n  more sou rce  f i l e s  and a s l i g h t l y  
more complex l i b r a r y  s t r u c t u r e  wi th  t h e r e f o r e  more need f o r  Ada Program 
L i b r a r y  t o o l s  t o  manage t h e  re-compilat ion and conf i g u r a t  i on  management 
a c t i v i t i e s .  

To t r y  o u t  t h e  m u l t i - s i t e  a s p e c t s  of t h e  p r o j e c t  wi th  a set  of  
independent ly  coded packages,  t h e  s a t e l l i t e  so f tware  was programmed i n  
ESA and t h e  s i m u l a t i o n  p a r t s  were programmed i n  Spain (CESELSA). These 
were then  i n t e g r a t e d  a t  a t h i r d  s i t e  i n  France ( In fo rma t ique  
I n t e r n a t i o n a l e ) ,  wi th  t h e  h e l p  of a l l  p a r t i e s .  

Acceptance was based on 10 t e s t  c a s e s  from t h e  ESTEC Assembler /For t ran  
implementa t ion ,  which produced i d e n t i c a l  p l o t s  i n  9 c a s e s  and a b e t t e r  
r e s u l t  a t  t h e  5 th  s i g n i f i c a n t  d i g i t  i n  t h e  10th c a s e .  
D i f f e rences  between computers were t h e r e f o r e  i n s i g n i f i c a n t .  

The main p a r t  of t h e  s tudy  produced working s o f t w a r e ,  and t h e  so f tware  
development l i f e c y c l e  worked s a t i s f a c t o r i l y .  Module t e s t i n g  a t  package 
l e v e l  l ead  t o  easy  i n t e g r a t i o n ,  with good suppor t  from t h e  symbolic 
debugger.  There i s  a c l e a r  conclus ion  t h a t  i t  pays t o  do module t e s -  
t i n g ,  and t h a t  t h e  r e s u l t i n g  i n t e g r a t i o n  e f f o r t  wi th  Ada i s  r e l a t i v e l y  
low i n  t h a t  c a s e .  A "module" i n  Ada is  de f ined  a s  package,  f o r  which 
each v i s i b l e  p a r t  ( d a t a ,  p rocedure ,  f u n c t i o n s )  is t e s t e d .  

OOD was found t o  provide  a n a t u r a l  method of producing a c l e a r  p i c t u r e  
of t h e  d e s i g n ,  which l e a d s  e a s i l y  i n t o  Ada d e f i n i t i o n ,  implementat ion 
and I n t e g r a t i o n .  

A summary of t h e  s t a t i s t i c s  of t h e  p r o j e c t  i s  shown below : 

Simula tor  l i n e s  
P-AOCE l i n e s  
L i n e s  of t e s t  code 
Comment l i n e s  
Comp i l e  t ime 
Execut ion t ime 

4800 - 
- 

1600 
5 m i n  
80 s e c .  

Req u i  remen t s 
4 r c h i t e c t u r a l  des ign  77 
D e t a i l e d  des ign  10 1 

40 

Code, t es t  & i n t e g r a t i o n  152 

4174 
2738 = 6912 

at36 = 7798  
3677 = 11475 
113 m i n  
350 s e c .  

TOTAL 370 = 31 l i n e s l d a y  
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Abstract : 

The structures of the formal definition of Ada are described in view c - f  
the work done so far in the project. At present, a 'difficult' subset r ,f  
Ada has been defined and the experience gained so far by this work ir: 

reported on here, 

Currently, the work continues towards the formal definition of the fc:: 
Ada language. 

____-_-----_------------------------------------------------------------ 
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(Ada Joint Program Off ice) . _______________-_------------------------------------------------------- 
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CUI - contractor, CNR/IEI - subcontractor, consultants: University c f  
Genoa (Dept. of Mathematics), Tech. University of Denmark (Dept of C ~ . n , p .  
Science), and University of Pisa (Dept. of Informatics). 
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Introduction. 

Since the final requirements of Ada (the STEELMAN document) and up to 
the present Reference Manual for the Ada Programming Language - 
ANSI/MIL-STD 1815A (RM) the language has been subject to a great deal of 
discussion, Comments, suggestions, and shear critisism. 

All of this evaluation has been done on the basis of natural language 
descriptions, since they are the only ones available. Natural language 
descriptions Of a certain size have a tedency to be ambiguous and 
contradictory and the RM is no exception to that rule. This has caused 
some trouble to users, mainly conpiler writers. 

It is our belief, that having had a formal (mathematical) definition Of 
the language developed together with the natural language description 
would to a large extent have had avoided these errors in the language 
design. Not only would it have helped in analysing the complexities Of 
the language which may have altered the design, but it would also have 
provided an unambiguous definition. 

As this was not done, the second best thing is to give a formal 
definition of the language as it now stands. The number of projects 
which have attempted this so far [ref INRIA 1982, Bjr~rner and Oest 1 9 8 2 1  
strengthen the belief that this work is important, and the fact that. 
none has succeeded in formally defining full Ada also indicates that it 
is a very difficult task. 

In order to gain confidence, and actually prove, that the project is 
able to formally define the full language Ada, the project has selected 
two sets of difficult aspects of Ada, in order to show that the 
expirience and the new methods used are adequate for the task. The 
reason for having two sets of aspects is, that Ada aspects which are 
statically difficult are not necessarily dynamically difficult, and vice 
versa  so both modelling static and dynamic semantics were tried out. 

A t  =he present stage the project has succesfully finished the trial 
definition of the Ada subsets, and is now proceeding to formally define 
f u l l  Ada. 

^. , r L ~ s  presents the work done, and experience gained in the trial 
definition of the difficult Ada subsets. 
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The Overall Structure of the Formal Definition of Ada. 

The draft formal definition of Ada has adopted the scheme for defining 
progzamming languages as found in VDM [ref Bjtarner and Jones 1 9 8 2 1 .  This 
means dividing the Semantics of the language into two parts: static 
semantics and dynamic semantics. This gives a good overview of the 
language features and in this case at the same time complies with the 
semantics of Ada. As described in the RM two types of rules a r e  
identified: rules which describe compile time checks to be performed, 
and rules describing the dynamic (run time) behaviour of an Ada prograrr,. 
Hence, the static semantics may be seen as the precondition f o r  t h e  
dynamic semantics of Ada. 

Both static and dynamic semantic definitions are written using tr.e 
syntax directed approach in a compositional style. Compositional means, 
that the semantics of a construct is given as a function of tb:e 
semantics of its subcomponents. Here semantics is understood as a 
homomorphism (function) from the algebra of syntax into some semantic 
algebra. 

Not only does the compositional style make the writing of the formulae 
of the semantics of Ada easier as the semantics of each construct 1 5  

defined in terms of the semantics of its subconstructs, but it b l ~ -  
enhances readability as you do not have to remember the semantics of 31- 
preceeding constructs in order to understand the semantics of a g l v r '  
construct. 

Of course for example in the static semantics you have to use ::... 
history to some extent, you have to know the names and types of  deflnc-: 
variables in order to perform the type check, but this informatlo:.. 1 s  
modelled in a separate abstract data type in order not to confuse t : i e  

overall syntax directed approach. 

One may consider the static semantics as the first part of the f o r r z :  
semantics of Ada. Static semantics takes as its input an algebra 2 :  

syntax which is as ambiguous as the grammar found in the RM.  Amb:;>~,~.> 
means, that you cannot tell the meaning of a construct wlthcut ts::: 
into account the context in which it is found. An example 1 s :  

a :- f(x); 

This is obviously an assignment statement, but the expression f ( x )  : 7 . : ,  

denote: 

- an element of an array 
- a function call with one positional parameter 

- a type conversion of the expression 'x' to the type If' 



The ambiguous grammar found in the RM, is translated directly into the 
algebra of syntax used in the static semantics. The idea is, that only 
essential information is retained. AS an example, in the assignment 
Statement the essential information is the fact that you have a 
left-hand side name and a right-hand side expression. 

The syntactic 
metalanguage written as: 

construct of the assignment statement is therefore in o u r  

Assignment-stmt :: Name x Expr 

Static semantics now performs the compile time check on the syntactic 
constructs found. In the case of f(x), operations on the data type 
reflecting declarations are used to look up 'f' in order to disambiguate 
the term f(x). Next overloading is resolved, the static checks for the 
left-hand side and right-hand side are done, and at last the validity of 
the assignment statement is tested using the knowledge gained trying to 
statically check its components (compositionallity). The knowledge 
could be the fact, that for example the right-hand side is not well- 
formed at all, and therefore the static check of the whole construct 
must also fail. 

In principle there is no reason why the dynamic semantic should not be 
able to perform its run time check of and execution on an Ada program 
on the same abstract syntax the one as used by the static semantics. 
9owever in practice this would impose on the dynamic semantics to do 
most of the work already done in the static semantics over again - like 
disambiguating syntactic constructs. This would complicate the dynamic 
semantics considerably, destroying the readability of the final formal 
definition of the dynamic semantics. 

The approach taken in this project, is to impose a transformation on the 
algebra of syntax used in the static semantics ( A S 1 ) .  This trans- 
formation transforms AS1 into an equivalent algebra of syntax ( A S 2 ) ,  
where the static problems to a large extent have been resolved, and some 
statically availabIe informatizq is distributed more conveniently (e.g. 
an aggregate is always given a type). 

Resolving the static problems of the syntax means, resolving o f  
syntactic ambiguities, giving unique names to identifiers (apply 
visibility rules and resolve overloading), adding derived infcrn:at 1 c . n  
(attach a type to an aggregate), and removing information not necessary 
for the dynamic semantics ( e . g .  the order in which compilation units 
a p p e a r ) .  

The A S 2  is  then t h e  starting point of the dynamic semantics. In order to 
improve readability, the AS2 is kept as close to the original Ada 
program as possible; a user should be able to recognize his program. 
t'urt-hermore, if a user wants to know some facts about the run time 
bet,a.,icur of h i s  program, he should be able to see the AS2 program 

c . 3 . 4  



without having to first write an Ada program and then impose the AS1 to 
AS2 transformation. This of course implies, that the program given to 
the dynamic semantics must be statically correct, since the successful1 
application of the static semantics is a prerequisite for the dynamic 
semantics. 

Human Aspects of Structuring. 

The writing of formal definitions is still an exercise mostly done in 
the academic environment since the writing of formal definitions has n o t  
yet matured into an engineering practice. 

As a reflection of this, most papers found on structuring of formal 
definitions are aimed at getting the right mathematical structuring, 
making sure that the whole formula system is correct and consistent. The 
issue of readability has not been addressed to any large extent. This is 
one of the facets of structuring that has been studied in this project. 

It is our belief, that formally defining Ada is only a worthwhile t l a s i .  
to perform, if a large group of people is able to use the definition. 

Our good luck has been, that through the last years many more peopie 
have become familiar with the notion and uses of formal definiticrt-. 
Some of the driving force has been the complex problems found r n  t!.7- 

development of large sofware systems and the users' needs for prcven 
programs, as software move into more and more vital positions of c u r  
society. Formal methods provide a tool for analyzing and buildlng s u c h  
complex systems and some industrial expirience has  a l ready  b e e n  r e p a r c e d  
on. 

Therefore some of the studies laid down in the task of structurlcg : n z  
formal definition of Ada have been in the area of finding out how hurr.a-7.~ 
read the formal definition, and what may be done in order to make  si:^^' 

that the reader gets the easiest access to the definition. 

In this work, many parameters have been looked into. Some a! t ! , <  
parameters have been: what about the size of the reports? model o r l e r i t c > :  
v s .  axiomatic descriptions, direct semantics style vs. contlnuatlons. 

The answer has not always been straiqhtforward, but we believe tha: L, '~ .  

have made the tradeoffs in such a way, that most people wit!; 
programming background and a little formal training added, shctAld k>2 
able to read and understand the formal definition of Ada. 

In the structuring of documents used in this project, each formula h a 5  
beer1 put into a tixed framework giving the auxiliary information needed 
j n  o r d e r  to read that particular formula. This information includes: 
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- Identification which directly relates the formula to the RM 
thereby helping people to understand the formal definition in Ada 
terms. 

- Short description of the objective of the formula. 
- The formula itself given either axiomatically or model oriented. 
AS model oriented is believed to be the most readable for 
computer programmers (it resembles a program) most of the 
definition is described in a functional style. If a number of 
concepts can be separated out into a selfcontained abstract data 
type, it has been done and in many cases the operations performed 
are described using axioms. 

- Natural language explanations of how the formula is supposed to 
perform its task, and correlation of the formula to the concepts 
of the RM that the formula describes. 

- An extensive cross referencing. 

Examples of the above may be found in [ref DDC and CRAI 19861. 

Structure of the Static Semantics of Ada. 

The subset static semantics of Ada is a homomorphism from the algebra of 
syntax into the algebra of booleans since separate compilation and hence 
libraries are not part of the subset. This homomorphism makes heavy use 
zf operations from abstract data types being able to extract information 
from t h e  program text taken into account until the current point of 
interrest. 

As a mean of breaking the static semantics into useable pieces, 
the foundation is a hierarchy of abstract data types each aimed at 
describing an essential Ada concept. 

Splitting a definition into data types describing concepts which are 
carefully highlighted in the RM seems to give the definition two 
properties: one is that the definition gets broken into manageable size 
definitions which may be combined, and the other is that breaking the 
definition into data types which define Ada concepts will give the user 
wtlo knows about programming languages (maybe even about Ada) a 
conceptual framework within which to understand the formal definition - 
facilitating familiarization with and enhancing readability of the 
definition. 
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The hierarchy of data types defined, has the following properties: a t  
the bottom of the hierarchy: very basic data types describing integers, 
identifiers etc. Next level describes types and the strong typlny 
concepts of Ada. This includes operations for the handling of derived 
types, subtypes, type matching etc. From this data type a new data t Y P c - '  
is built describing the properties of all entities in Ada which you may 
declare. 

In the same fashion concepts like visibility, overloading, and g e n e r i c s  
are described in abstract data types in further levels of the h i e r a r Z t . 7 .  
The topmost data type is called SUR abbreviated from surroundings. Ttd7.s 
data type describes the 'static history' of the compilation unit sa far, 
by combining all information from lower level data types. This IS der.?, 
in order to assemble all static semantics information in one place. 

The data types are used in the formation of the homonorphism frcm t.'.:: 
algebras of syntax. This homomorphism is named the well-formed (wf) 
function ( 9 )  . 
In the subset the 'root construct' is the subprogram body. The c y p e  : E  
the function is-wf-Subprogram-body is: 

Subprogram-body i SUR i BOOL 

but often the check, that a given construct is well formed canr:ct L i .  
performed if the only fact known about the subconstructs is whether t!.c;' 
are wellformed Or not. Further retrieving of information dbout c t t c  
Subconstructs is necessary. As an example take the assignment scacerr:er-.r : 
the left-hand side has to be well formed, the right-hand side has t . 3  L:: 
well formed, but on top of that, the types of the two sides have te : z C .  
t h e  same. As an is-wf function only returns BOOL, data type o p e r a r : ' - ? s  
and auxiliary functions have to be used in order to retrieve t h ?  : \ ; . ; . I  

information from both sides. 

Structure of the Dynamic Semantics of Ada. 

The dynamic semantics of Ada is modelled using the SMoLCS ( 5 t r u L - t : : : .  : 

Monitored Linear Concurrent Systems) method as descrlbed 11: i :, : 
Astesiano et a1 19851. 

Using the SMoLCS method already imposes some structuring on the fJr .r .31 
definition of the dynamic semantics. SMoLCS is a layered approa:h t o  tt,? 
description of concurrency. It Consists of four layers. At the bntt,.m 
describing t h e  basic states possible in the system we find a labelle..: 
transition system similar to the ones found in for example 2 C S .  
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In order to describe the behaviour of the concurrent system, some con- 
straints are applied to the transition system. These constraints fall 
into three types. First all actions which may result as synchronized 
operations of processes are identified, next all synchronized actions 
which may occur in parallel are identified, and the last step defines 
which actions are possible in the system as a whole. 

The above levels constitute what we call step 2 .  Step 1 of the dynamic 
Semantics, which is using a denotational style is the homomorphism from 
the algebra of syntax into the semantic algebra defined by step 2 .  As  
the metalanguage makes it possible to axiomatically define operations 
which closely match Ada concepts, the issue is what to define 
denotationally. 

The problem has been solved by structuring the definition of dynamic 
semantics in such a way, that all concepts described in the RM are 
defined in denotational clauses, so that no concept of Ada is hidden in 
an abstract data type. 

An argument for moving the concepts from the denotational part could be, 
that a definition may be written more abstractly by moving some Ada 
concept modelling out of the denotitional part, but for the reason of 
understanding by the user, it seems more appropriate to split as 
described above. 

A further advantage of the SMoLCS method is the high degree of para- 
meterization. This is used to describe some of the features that pre- 
viously have been very difficult to describe. These sorts of concepts 
include implementation dependent features. They may now be modelled by 
including the appropriate parameters in the definition. A further con- 
cept is context clauses. Also here the parameterization scheme helps 
[ref DDC and CRAI 19861. 

Cor,clusion and Further Work. 

~ h n  formal definition of the subsets mentioned has assured us, that t h e  
task of formally defining the language Ada as described in t h e  RM is 

feasible and can be done. 

During the work with the trial definition we have seen, that in the 
static semantics the abstract data types had a tendency to become rather 
large. The problem is overcome by splitting some of them into smaller 
d a t a  types. This is almost also a prerequisite for the second change: 
the axiomatic modelling of the data types. Currently they are defined by 
3i~ririg a specific model, but breaking the data types into smaller 
,!r;flni t~ions makes an axiomatic definition feasible. 



In the dynamic semantics the distinction between operations defined 
axiomat.ica1ly and denotational formulae will be studied further. It 
seems as if the optimal solution (whatever this may be) has not been 
found yet. 

Finally, fo r  both sorts of semantics, some ways of modularizing formulae 
is needed in order to enhance the readability. The static semantics 
already to some extent is modularized, but more is needed and the 
dynamic semantics need more modularizing in step 1. Furthermore, the 
formal definition has to be updated w.r.t. the commentaries from t h e  
Language Maintenance Committee, a task which is timeconsuming and nrit 
always straightforward. 
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Recent Trends Related t o  t h e  U s e  of 
Formal Methods i n  Software Engineering 

Sorren Prehn 
Dansk D a t a m t i k  Center 
Lundtofteve j 1 C  
DK-2800 Lyngby (Copenhagen) 
Denmark 

Abstract : 

An account is given of sane recent develapnents and trends related t o  t h e  deve l -  
opnent and use of f o m l  methods i n  software engineering. The paper focuses G I :  

ongoing a c t i v i t i e s  i n  Europe, since there  seems t o  be a notable difference i n  
at t i tude towards industr ia l  usage of formal methods i n  Europe and i n  t h e  U.S. 

A more detailed account is given of t he  currently mst widespread formal metnr : 
i n  Europe: the Vienna Develo-t ethod. A currently ongoing project,  R4IUii:., 
aiming a t  developing a second generation formal method and related t o o l s  l:i 

described. 

Finally, 
methods, and t h e  potentihl  for constructing Ada-specific tools based cn :.. 
methods is considered. 

Lhe use of Ada" is discussed in re lat ion t o  t h e  application of fcm,< t :  

Ada is a registered trademark of the U . S .  Government 
(Ada Joint Program Office) 
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1. Introduction and Background 

It is well-known that the increasing use of software systems of an incrcasingly 
complex nature h,.roses greater requirements to the quality of software, its 
documentation and maintainability. It is also well-known that since the term 
"software crisis" emerged, little progress has actually been made in industrial 
software developnent environments towards meeting these requirements. 

In this paper, we advocate the viewpoint that industrial software engineering 
today really is not engineering, and that real progress is to be sought in the 
maturation of present software production technology into a true engineering 
discipline. 

It is believed that the characteristics of a true engineering discipline are 
twofold: 

- the discipline must have a mathematical foundation 
- the day-to-day practises of the discipline are not necessarily truly formal 

This is to be understood in the following way. The requirement for a matnema- 
tical foundation is triggered by the desire to be able to reason about the 
objects created during software developnent (such as specifications, programs, 
and design decisions) in a way that allows one to detexmir.e whether any such 
reasoning is valid or not; in particular one would like to be able to reason 
about the functional correctness of a program with respect to a specification. 
On the other hand we believe, in particular when one considers industrial 
software developnent, that such formal reasoning will mainly take place in order 
to establish ("once and for all") general rules and techniques whose correctness 
and soundness are verifiable. On a day-to-day basis there is presently no hop 
that developnent of any but trivial (small) programs can be thoroughly 
reasoned about in a formal way: the combinatorial conplexity is sirrrply too hiqL. 
Thus we advocate the  daily use of rules and techniques whose formal 
correctness and soundness have previously been established. 

TP.is is well in accordance with the way established engineering disciplines 
work. For example, electronics engineering has a rather firm basis in 
mithematics (e.g.: the use of Complex Calculus to describe qwsi-stationary 
circuitry) and makes heavy use of various formal notations (such as diagrams, 
being a language with a precise, mathematical meaning (and a graphical syntax)). 
In daily life, the electrorLcs engineer goes about his job mainly on the basis 
Qf previously established design principles, without considering the formal 
prfjofs of their soundness. However, from time to time, it is necessary to bring 
i n  formality, to make mathematical analysis and conduct proofs. This typically 
?.a;Jpens when a cmpletely new sort of circuitry is being considered, or when 
requirements to circuitry functionality and reliability are particularly strict. 
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Here it is worth noting that only the fact that electronics engineering has it 
mathematical basis makes this pogsible; it would not have worked to base d a i l y  
practises on informal notions, and then bring in formality from time ta time. 

1 . 
The analogy offers another interesting observation: there seems to be t.wo 
different styles of work involved: one style is based on using sound dcvcloyxrcrtt 
rules, anather on formally analysing (e.9.: proving the correctness of) art 
otherwise constructed object (such as the design of an electronic circuitry). Wr- 
shall return to this dichotcmy. 

It is not surprising that developnent has not yet evolved into a tnw 
engineering discipline. The trade is relatively young, and the requirements i 

the (complexity of the) software systems to be produced are ever increasirq. 
Mathematics and formality has, though, been successfu!ly applied to varir,ii,, 
aspects of software developnent. The availability of EX? g r m r s  and par.,' 
generators is the classical, convincing example. 

software 

The scene is, however, beginning to change. In Europe, infomt ion technolc(j;t 
industry in general dmnstrates a growing interest for formal specification r j r r ' i  

design languages, for formal developnt rules, and for formal verificat 1 ,r 
techniques. This, we believe, is in contrast to the trends in V.S. i n fon r~3 t1c r  
technology industries, where the erphasis appears to be on tools, workstatirxlc, 
and erzironments, rather than on the methods they should support. 

The purpose of this paper is to outline current trends in Europe. Giver! I I , .  

space av ilahle, it is impossible to give a complete and covering picture, I t . !  

alone tcj go into much technical detail. It is hoped, however, that the material 
presented will stimulate discussions on introducing formal methods into indu- 
strial software engineering environments. 

In section 2, an overall scenario is presented, and a nwnber of re1eva:it 
research and developnent projects are mentioned. In section 3, an account- ::. 
givr i of the so-called Vienna Developnent Method (VDM) , which was the f 1 I:;* 

purportedly formal method to reach any industrial significance, despite 
shortcomings. I n  section 4 ,  an account is given of the RAISE project, who:>l.  
explicit objective is to provide formal languages and techniques for s o f t w a r t .  
enqiner-ring (in the above sense) as well as support tools. Finally, in sect : .  :. 
5, perspectives specifically concerned with Ada are discussed. 
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2. The European Scene 

Although there has been sane industrial interest in formal software developnent 
m&m% in the European information technology industry over the past decade, 
and even a few successful attenp?ts to seriously apply such methods on "real" 
projects, formal software deve1-t methods have had no pervasive impact. 
There has been a distinct, and partially well-founded, belief that formal 
methods were not sufficiently industrialized. Also there has been an asswion 
that formal methods probably were not worthwhile to apply or even harmful. 

However, f ~ m a l  methods are now beginning to come about in industrialized fGm, 
and it is becaning increasingly clear to industry that software developnent 
practises must be seriously -roved if the potential and challenges offered by 
the continuous hardware technology evolution are to be met. 

Also, European academe has a strong tradition for research in the formal methods 
area, and there is today a strong desire to trar.sfer the acquired knowledge ano 
expertise to industry. 

Probably, the most visible evidence of this trend is the joint industrial and 
academe support of and participation in projects, concerned with formal methods, 
sponsored by the Camnission of the European Communities (CEC) . It is interesting 
to note that these projects typically involve cooperation between some four to 
six partners, industries as well as universities. 

In order to give an idea of the range of activities and institutions involved we 
list a n m r  of projects, totalling several hundred psrson years of effort, 
sponsored under the ESPRIT program [ESPFUT 861 (European Strategic P r o g r m  for 
Research and developnent in Information Technology). For each project, name, 
title, and participants are indicated: 

FORMAST 
Formal Methods for Asynchronous Systems Technology 
Advanced System Architectures (United Kingdom) 
Erno (West Germany) 
Imperial College (United Kingdom) 
Univerrity of Kaiserlautern (West Germany) 

GRASPIN 
Personal Workstation for Incremental Graphical Specification 
arid Formal Implementation of Non-Sequential Systems 

@ID (West Germany) 
01 ivetti (Italy) 
Siemens (West Germany) 

PROSPECTRA 
Program Developnent by Spcification and Transformation 
University of Bremen (West Germany) 
University of Saarland (West Germany) 
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System KG (West Germany) 
University of Dortmund (West Germany) 
Syseca Logiciel (France; 
University of Passau (West Germany) 
University of Stratchclyde (United Kingdom) 

RAISE 
Rigorous Approach to Industrial Software Engineering 
Dansk Datamatik Center (Denmark) 
Standard Telephone and Cables (United Kingdom) 
Nordic Brown =veri (Denmark) 
International Camputers Limited (United Kingdom) 

METEOR 
An Integrated Fornal Approach to Industrial Software Developnent 
Philips (Nether lands 
CGE (France) 
AT-T .5 Philips (Belgium) 
Stichting Matematish Centrum (Netherlands) 
COPS Europe (Ireland) 
Tech. Software Telematica (Italy) 
Univer:-;ty of Passau (West Germany) 

GENESIS 
A General Environment for Formal Systems Developnent 
Imperial Software Technology (United King-) 
Imperial College (United Kingdan) 
Phi 1 ips (Netherlands ) 

It is not within the scope of this paper to ellborate on the actual contents G I  

the individual projects. However, section 4 describes one of the projects 
(RAISE) in more detail. Another major project that should be mentioned is thc 
Munich CIP project carried out at the Technical University of Ifunick 
[Bauer 76, CIP 851. 

In Europe, the interest in fo-1 methods appears to concentrate more on fonn2! 
specification and f o m l  developnent than on verification. That is, there is 
belief in the transformational programning paradigm: i f  an mlementatian ::j 

produced solely by applying a series of transformations, each of which art. 
correctness-preserving, to an initial specification, the inplcmentation will 
necessarily be correct with respect to the initial specification, thus eliminat- 
ing the need for verification. The interest in this style of developnient is 
connected with two Concerns: firstly, it tends to eliminate an earl.!, 
introduction of (design) errors, and secondly, recording the series Llf 

transfomtions applied produces invaluable documentation of the system desiL;l> 
process. 

c.4.5 



3. The Vienna Developnent Method (VDM) 

VDM originated in the IBM Vienna Laboratories in the early seventies and was 
developed in connection with a project aimed at developing a production quality 
p L / I  compiler. The project group initially worked on giving a formal semantics 
for PL/I; this effort probably constitutes the first example of successfully 
applying formal techniques to a fairly large-scale problem in an industrial 
environment [Bekic 741. 

During the late seventies, VIM w a s  further developed, and an increasing nwber 
Of developnent projects using VDM emerged. Areas in which M)M was applied 
camprised not only programning languages and caopilers, but also databases, 
operating systems, hardware specification, business aFplications, etc. 

[Bjramer 831 contains an overview of M?M basics and an extensive bibliography. 

[Bjamer 821 contains numerous major examples of VDM specifications. 

Today, there is a rather pervasive interest in VIM in Europe, as witnessed by 
the formation of 'W Europe", an interest group sponsored by the CEC and 
drawing participants frm a fairly substantial nunbr of European industries and 
universities, and by the formation of an industrial panel in the United Kingdom 
working towards making the VDM specification language into a British 
Standard. 

Technically, VDM is -sed on the techniques developed fo r  giving denotatioca- 
semantics of programming lalguages. A denotational semantics is given as a 
homomorphism f r a  an algebra of syntactic abjects to an algebra of semantlc 
objects, or, somewhat sinplified, maps pieces of syntax onto semantic objects 
such as state transformations (functions fra states to states). The principle 
readily adapts to numerous applications: many systems may conveniently be 
characterised by a state, which is manipulated by operations. Names of opera- 
tions and their arguments are then considered to L>e syntactic objects. 

VDM is model-oriented. By this is meant that the objects (syntactic and 
senantic) are explicitly constructed in terms of given constructors such as 
sets, lists, rnaps, and functions. This is in contrast to property-oriented 
specification approaches, such as algrebraic specification approaches, where 
objects defined -licitly by the equational rules for the operations that 
ran ipu 1 at es them. 

are 

It is strongly believed that this aspect of VDM has been crucial for l a rge r  
applications, and for the acceptability of VDM in industrial environments: 
model-oriented specifications tend to appeal much more to software engineering 
intuition than does property-oriented specifications. On the other hand it also 
clear that a model-oriented specification methodology may easily be abused to 
prqduce very operational "specifications" and presents a prevalent danger of 
over-speci f ication. 
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4 .  The RAISE Project 

The RAISE project (Rigorous Approach to Industrial Software Engineering) is a 
115 person-year effort undertaken by a consortium consisting of Dansk Datamtik 
Center and Nordic Brown &veri (Denmark), and Standard Telephone and Cable:. 
p.1.c. and International Camputers Limited (United Kingdom). The prolect I S  

partially funded by the Comnission of the European Ccmrmnities under the ESPRIT 
progrme, and is carried out in the period 1985 to 1989. An overview of ttjI: 
RAISE project is given in [Meiling 851. 

The RAISE project will provide an environment consisting of 

- a wide spectrum language in which one can express abstract, formal specifi-  

- means for expressing and affecting transfomtions of such entities 
- proof systems and techniques serving to verify the correctness of such 
- a comprehensive tool set 

cations, designs, and algorithms 

transformations 

Also, the project has been designed to include production of educaticr.c:. , 
training and technology transfer material alongside with the developnent of :.,- 

above. 

In RAISE, Rigorous hints at the underlying dogma that, although the RAISE L:+:..- 
guage is formally defined and in principle enables the user to proceed s t r i  Y :,: 
formally in developiny a software system, practical conditions and req.:i rc:.C:: 
force one to choose, pragmatically, to carry out various parts of a cieir :  I - 

ment with varying degrees of formality. The philosophy behind the design of ?.. 
RAISE tool set is to facilitate such a working style rather than to force a E>-.:  

into unmanageable formality. 

RAISE encourages developnent by application of correctness preserving era:.!:: : 
mations, and allows for the developnent and verification of such t ra : isr ,  ::' : 
tions. The choice of csing a specifically dosigned wide spectmr, is:..;'. . . 
implies that most of a developnent can be carried out independentlr c :  :: 
perspective implementation language: only a final step in a developmmt w : .  . 
carry a detailed, operational design into code. Typically, the CP& : : 

software system will therefore not exploit all the bells and whistles ;': :: , ,  
implementation language; indeed, it is hoped that only rather w e 1  1 - i - > t , k : . , i ' L '  : 

systems will then result. 

In RAISE, Industrial hints not only at the above-mentioned pragnutic chc:I-t,-, 
that should be catered for, but also at truly quality tools and nlan-mac-h:i:r 
interfaces, usability of methodologies for "real" software systems, inclu,dLm; 
the ability to obtain efficient end-products. In order to ensure confcrm.~n,-c~ 
with these requirements, the project has been designed to include a I;W.LX~L ' :  
indus tr ia l  t r i a l s ,  i .e. applications of (intermediate versions of) l L m , ~ ~ ~ < 3 . ; L  :;, 

methods and tools during the course of the project; such industrial trials c i ~ L .  

to t ake  place in actual industrial project:; not otherwise connected with m~si:. 
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5. Some Future Perspectives 

At present, it is fair to say that the industrial use of formal methods in 
Europe is beginning to happen. There is, though, still a long way to go. The 
major obstacles we are facing are: 

- insufficient matureness of formal methods 
- lack of management awareness 
- lack of educational material and capacity 
- lack of tools 

A nunber of projects have been mentioned which atterrlpt to seriously work towards 
more mature formal methods, keeping the more pragmatic requirements to the p- 
tential for industrial usage in focus. These projects were designed to bring o u t  
the best of earlier formal methods, combined with the most recent advances i n  
research. It is believed that the next 2 to 5 years will bring about radical 
progress. 

By the term "management awareness" we primarily think about first and second 
level managers' willingness to allow or force formal methods to be introduced 
into projects and divisions. The present, rather widespread conservatism is well 
understandable: although a number of successful projects having employed fornnl 
methods can be identified, it is, in all fairness, characteristic for s u c h  
projects that they have been carried out in particularly friendly envir- 
onments. Will formal methods actually port to "real" industrial environments? 
The most important part of the answer, we belie\.e. ' s  reflected in our rlt'xt 
cc7nsern. 

Availability of educational material and sufficient well-qualified personnel t 1, 

aid in the introduction of new technology are invariably a major concern in m l '  
situation of evolution, and indeed also for the introduction of formal metho(is. 
However, we beleive that availability of text books, workshops, and courses i : i  

not sufficient. It appears to be a general experience that the introduction O I  

f o m l  methods should happer, (1) in connection with a real project, ( 2 )  t , , ,  

preceeded t-y intense education (not just training), and ( 3 )  -- crucially -- DI' 
supported by on-project consultancy provided by experienced pract it ionel-s . 

For the moment, few tools supporting formal methods are available. So,  basicall). 
experiences today have been painstakingly acquired using paper and k i d  
scepticists may reasonably ask whether one can have more confidence in f o r n i l  
specifications and designs not checked by tools than in programs not checked b y  
a compiler. Nevertheless, projects based on 3 levels of paper-arid-pm-I 1 
description (specificat ion, high-level and low-level designs) pteccwdin~j I 11:- 
irrplemcntat ion have proved to come up with rather startling net: product i v i t  !+ 

ficpres and low error r a t e s .  With really good t-ools, we should tw able. t c )  <i t )  
even bet.ter. It is important to us,  however, that method desiqn, under-:,t aiikiin,i 
and exper i c n w  preceed the const mct ion of tools. 

F ' t n c i l .  
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The Perspective for Ada and Formal Methods 

Ada is prabably one of the most complicated programning languages ever designed. 
The canplexity is clearly witnessed by the imnense amount of resources that has 
been requird to bring about a reasonably debugged reference manual, compilers, 
and so on. 

The canplexity mainly stems fromthe rather large number of language concepts 
and features and, in particular, their general interaction. ~n often-noted 
prablem is, as an example, that concurrency (tasking) interfere with the  
semantics of otherwise well-understood constructs such as function calls in d 

rather non-transparent way: the effect of tasking is not clearly bound to t h e  
syntax of Ada. It is to be fearedthat the complexity of Ada may impart 3 

serious threat on the ability to construct and maintain correct and reliable 
software systems. With the widespread acceptance of Ada as the preferred 
programning language for military and space applications it is mre urgent thar. 
ever to be serious about true engineering techniques and tools that will enable 
industrial construction of correct and reliable software. 

We believe that there are two (canplementary) lines of developnent to be 
pursued: adoption of the transformational progrdng pradigm, and provicLr-4 
usable techniques and tools for analysis (including verification) of pro3rzi-s. 
These two lines will probably be effective at different points in time: altta-j, 
powerful transformational programing systems are currently being developed, 1~ 

will invariably take some time before such systems cane into widespread use -- 
hence there is an extremely urgent need for providing tools that can assist i r  
analysing Ada programs having been produced by mre traditional techniques. 

If such tools are to be of an interesting quality they must be based on a fcrza: 
understanding of Ada.  It is hoped that the ccmpletion of the Draft Foms? 
Definition of Ada [Hansen 86) will provide the necessary foundation. 
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anaaina - Ada De veloDment James R. Green 

Introduction 

The Ada programming language was developed under the sponsorship of the 
Department of Defense to address the soaring costs associated with 
software development and maintenance. Ada is powerful, and yet to take 
full advantage of its power, it is sufficiently complex and different from 
current programming approaches that there is considerable risk associated 
with committing a program to be done in Ada. There are also few 
programs of any substantial size that have been implemented using Ada 
that may be studied to determine those management methods that resulted 
in a successful Ada project. 

As the Manager of Standard Products, I have the responsibility for 
developing software products that will be offered for sale on the open 
market. One of the products which has been developed is implemented 
entirely in Ada and its success demonstrates that a project can be 
successfully done using Ada. The program itself comprises over 130,000 
source lines of Ada code. This project, although not large by today's 
standards of software development, did cause me to face the frustrations 
and the difficult management tasks associated with implementing an 
entire program in Ada at a time when the Ada development environment 
was less than desirable. The items presented in this paper are my 
opinions which have been formed as a result of going through this 
experience. The difficulties faced, risks assumed, management methods 
applied, and lessons learned, and most importantly, the techniques that 
were successful are all valuable sources of management information for 
those managers ready to assume major Ada developments projects. 
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Manaaina Ada Develooment James R. Green 

People - A Key Ingredient 

Projects are implemented by people. The right people are definitely a key 
ingredient to the success of any project. Ada is no different. Management 
must realize this at the beginning of a project and ensure that "the right 
people" are selected. Ada has new concepts which are different from other 
languages. Concepts such as packages, specifications, body, information 
hiding, generics, instantiation, and multi-tasking are all examples of  
concepts and features of the Ada language. Since many of these concepts 
do not exist in other languages, management must be prudent in selecting 
personnel for assignment to the Ada project itself. 

The real power of the Ada language lies in the concepts not necessarily 
available in other languages. The people in key positions of the project 
must relate to these concepts and management must ensure that the 
people that are initially selected do relate to these concepts. It is 
possible to write code in Ada that utilizes only the most elementary 
concepts. An analogy to this would be writing Ada code using only the 
constructs allowed by FORTRAN. Clearly, the code may work, but you will 
not realize the benefits of the Ada language. 

Those people selected to work on an Ada project most probably will have 
prior working experiences in other languages. Their effectiveness on the 
Ada project will be related to how easily they accept the new language 
features and strive to use them effectively. As a manager, you do not 
want the powers afforded by Ada, to be eclipsed by an engineering staff of 
parochial vision. 

I have found that people who have recent degrees in computer science 
relate well to these concepts. In addition, personnel who are well versed 
in Pascal programming, seem to transition quite easily into the Ada world. 
In my experience, I was fortunate to find talent that related these 
concepts. At the beginning of the project, no one on my team had any Ada 
experience, and further, few of them had any knowledge of what Ada was 
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all about. The success of this project is a tribute to their talents. 

Management must seriously scrutinize the qualifications of those people 
they select to implement Ada projects, Selecting the right people will 
definitely increase your probability of implementing a successful Ada 
project. 

Trainina Proarams - A Kev lnaredient 

Ideally, you would want to hire people who have performed successfully on 
other Ada projects. However, there is a limited number of people who are 
proficient in Ada and I highlight the word proficient. Proficient meails 
that the people understand the complex concepts of this new language and 
understand how to apply them. This is different than just knowing the 
syntax and semantics of the new language. There is a large body of 
software people that are well versed in FORTRAN, JOVIAL, COBOL, and 
other well established, high-level software languages. Many of these 
people will be transitioning to work in the Ada environment. Management 
must provide a means for these people to transition successfully into the 
Ada world. This leads me to the second key ingredient to success-- 
training programs. 

The program which I managed began with people that were unfamiliar with 
Ada. There was a wide variety of background experience among the people 
selected for the project. It was clear at the outset that a key ingredient 
to the success of the program would be the implementation of an effective 
training program. The training program would provide two benefits. First, 
it would establish a common baseline of knowledge for all people on the 
project at that time. The varied experiences of the people, and their 
k.nowledye of software engineering was an unknown. By covering these 
topics in a training course, I could be sure that every one on the project 
was in synch with respect to vocabulary, concepts, approaches, 
methodologies, and techniques. The Ada programming language and the 
concepts and methodologies to be used when designing Ada programs could 
be covered in detail. In addition, there would be a benefit of discussing 
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appiication techniques--that is how to implement certain features using 
the Ada language in practical applications. The training program that 1 
implemented actually consisted of five courses and ~ o r r i ; ~ ~  Ised 1 2 2  
classroom hours of instruction. 

The courses developed and given were: 

Introduction to Software Engineering ........... 32 hours 
Software Design Methodology ........................... 40 hours 
Cbding Methodology ................................................ 16 hours 
Ada Programming Support Environment ........ 4 hours 
Ada Programming .................................................... 40 hours 

The Software Engineering, Design Methodology and Coding Methodology 
courses were developed in-house. These courses are specifically 
designated to provide a sound understanding of the software development 
process, software life cycle and design methodologies. The Ada courses 
used books and lecture material that was available at the time. It dwelied 
primarily on !he syntax and semantics of the Ada language. 

The length of time that was taken for training may seem excessive, and 
indeed, at the time I thought it was excessive. However, during later 
stages of the project, it was clear that the time spent at the front-end of 
the project for training, was time well spent. 

I cannot stress strongly enough the need for the development team to 
understand good software engineering principles and design methodologes 
To fully realize the power of Ada in your program, these principles must 
be understood and used. Although, in my case, all individuals went through 
the same level of training, I would recommend different levels of training 
for different project people. I would recommend two to four weeks i)i 

intense training for key technical people on the project, and possibly one 
to two weeks for junior people. The Ada training for the junior people will 
be augmented through on-the-job-training and the assignment of tasks 
under the guidance of the more senior and more experienced project 
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personnel. 

The training issued, and the time and monoy which should be allocated 
during the project for training, is quite controversial. There are a number 
of training programs currently available. However, many training courses 
are short and cover the syntax and semantics of the language primarily. 
For the training program to be truly successful, it must include the 
software engineering and design principles needed b; those people 
designing the Ada program. These people must understand these 
principles, and they must understand how they relate to Ada and this 
means that significant time must be spent on the software engineering 
aspects of software design. 

I recognize that the effectiveness of a training program is largely 
realizable only after you are well into your project. 

The 132 classroon hours that I allocated for training at the front-end of 
my project, was excruciatingly difficult to justify at the time. I t  
appeared for several weeks that the project was making no progress in 
accomplishing its real objective of designing ana implementing a software 
program. However, I now firmly believe that the time spent on the basic 
fundamentals of software design reaped enormous benefits later in t h e  
program. The issue of training must bs taken seriously by management as 
well as the training programs themselves. How well the skills and 
methodologies are learned by your personnel will greatly affect the 
success of the project. The training must be effective and the perscimel 
assigned to the Ada project must be aware that management considers the 
training crucial to success and that they must take it seriously. I beliwe 
that training related exercises may indeed be integrated with initial 
project tasks in a sort of a real laboratory exercise. 

0 

At this point, you as a manager would theoretically have qualified people 
who are trained and capable of implemeriting an Ada project. The next 
issue you may worry about are the schedule issues. How can you best be 
assured that the project is progressing on schedule and whether the 

D.1.1.6 



:c 
anagina - Ada Oeve loomen t Jatnes R. Green 

schedule is realistic. There are numerous models and rules of thumb 
which apply for FORTRAN and COBOL and other languages as to the relative 

the project, how much time is spent during the actual coding, and hcw 
much time is spent during the test and integration portion of the project. 

of the time is allocated to requirements and design, 20 percent to code, 
and 40 percent to test and integration. It is my experience, however, that 
when implementing a program in Ada, significantly more time and effort 
should be sxpended during the requirements and design phase. Possibly as 
much as 55 percent to 60 percent of the time should be allocated a n d  
expected 10 be spenl during the requirements and design phase. Only 15 
percent of the time need be allocated to code, and 25 percert to 30 percent 
of the time should be spent in testing and integration. 

amomt of time that is spent during the requirements and design phase of 

I have traditionally used the 40-20-40 rule-of-thumb, where 40 percent e 

It has beer: the experience of people on my project, that if the Ada code 
compiles, chances are good that it will run. I had teams of workers 
implementing different elements of the program. All of the parts of the 
program had to work successfully together in order for the entire project 
to work. We havc found that the test and integration phase is extremely 
shortened using Ada. If a module compiles, chances are very high that i t  

wil! run except if there are design errors which go back to the extra time 
spent for requirements and design. You must ensure that your design IS 
correct and sound. 

There are many features in Ada which will result in the program being 
accomplished very quickly. One of these features is a concept called 
"generic." The concept of generics is that you design a template to do a 
certain function, and each time the template is invoked at various places 
in the program, it is instantiated or initialized to the values needed for 
that particular function. Generics are extremely powerful. However, in 

order to get the most benefit from this feature of the Ada language, a lot 
of effort must be put in the design of these generic packages. This is an 
example of how the training and the software engineering elements work 
together to ultimately benefit you project schedule. Approximately, 50 
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percent of the program I was responsible for, is implemented in generics, 
and the success of a particular generic was largely dependent upon the 
amount of time that was spent in determining the requirements of each 
instance that generic would be used and ensuring that the design of that 
generic package was sound for all instances. 

Another key consideration for successfully managing an Ada project, has 
to do with creating an atmosphere which is conducive to accomplishment. 
When management is planning the schedule for an Ada program, there r r A  
be enough time at the front-end for the technical people to be accustomed 
to and familiar with the new language. Progress on the project may be 
excruciatingly slow during this time period, but as the technical people 
become more accustomed to the features and capabilities of the Ada 
language, they will be able to better apply this knowledge during the 
actual applicatim required in the project. An atmosphere for 
accamplishment, I believe, will encourage experimentation and pushing the 
language to its limits. In my particular instance, the Ada compiler which I 
had available at the time that training was occurring, was of poor quality 
and several of my people found that the Ada compiler really did not 
operate in accordance with the Ada Language Reference Manual. They tcok 
it upon themselves, as part of their training exercises, to determine all 
those features of the Ada Language Reference Manual which did work. 1 
encouraged this sort of activity as it broadened their horizons and it held 
their interest in the project during the period of time that training was 
occurring. This atmosphere of accomplishment meant that the technical 
people were not afraid to try things and risk new methods o f  
implementation. They became less fearful of failure and concentrated 
more on success. This attitude is extremely important to maintain for a 
successful Ada project. The technical people will engage in frustrations 
and difficult things, but they must be able to experiment and they must be 
able to feel the freedom to try new things. You must develop a "can do" 
attitude in your technical people. 

Risks and Cost Considerations 
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An area of major concern to management to committing a project in Ada is 
the unquantified cost associated with it. There will be cost associated 
with training, there will be cost associated with new compilers and 
software tools, computers, and there is not guarantee that the people that 
are hired on the project will be able to accomplish the project. Indeed, the 
risks to doing a project in Ada are formidable. In order to control these 
risks, and maintain the project on cost and schedule, management must 
aggressively be involved with all aspects of the project. By this, I mean 
you don't have to know how to program in Ada. Indeed, I do not. However, 
you must be able to relate and understand those concepts and those 
methodologies which are successful. 
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Management should consider that doing a project in Ada will involve many 
risks that are not present in projects using other traditional languages. 
The risks to be faced are not unmanageable, and as a result, the aggressive 
manager--that is one who can quickly spot trends leading to success as 
well as trends leading to failure and can direct actions appropriate to 
either trend, will be able to successfully complete an Ada project. 

Since risk equates to cost, the Ada project manager will want to reduce 
risk as much as possible. I believe this may be done through prudent 
selection of personnel, good training programs and agressive involved 
management. 

This short discussion on Managing a Program in Ada has touched only a few 
of the elements management must be concerned with. These, however, are 
keys to success. 
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LESSONS LEARNED: MANAGING THE DEVELOPMENT 

OF A CORPORATE Ada TRAINING PROJECT 

Linda F. Blackmon 
Coordinator, Corporate Ada Training Curriculum 

General Dynamics 
Fort Worth, Texas 

This paper discusses the management lessons learned during the 
implementation of a corporate mandate to develop and deliver an 
effective Ada training program to all divisions. The management 
process involved in obtaining cooperation from all levels in the 
development of a corporate-wide project is described; The problems 
areas are identified along with some possible solutions. 
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Automated Fortran Conversion 

Gregory Aharonian 
Source Translation & Optimization 

P.O. B o x  404 
Belmont, Ma 02178 

617-489-3727 

What to do with a million lines of Fortran code? Managers 
a t  every major Fortran installation are asking this question 
every day. Newer programming languages (C and A D A ) ,  and newer 
computer architectures (parallel, data flow) pose a serious 
dilemma. How will the algorithms and mathematical techniques in 
tens of thousands of Fortran programs be moved to these 
environments? Further, since no language will dominate the 
science and engineering arena, another question arises. With 
strained programmino, staffs and budgets, how will algorithms be 
maintained in multiple languages and architectures? 

There are three solutions. The first is to hire additional 
staff to translate programs across languages, to coordinate and 
maintain large libraries of subroutines in the difierer:: 
languages using existing software tools. Most of the conversion 
will be from Fortran to C and A D A ,  a project with many unresolved 
issues (in particular array handling). The solution is 
unfeasible economically, when you consider the number o f  
combinations of environments (a language out of Fortran,C,ADA,any 
other) with a new architecture (out of Cray, FPS, CSPI, Al l i a n t ,  
etc.). The staff requirements and overhead will be excessive, 
even if you could find enough people willing to do the v e r y  
boring work of translating and maintaining software. 

The second solution is to develop completely automatic 
language translation programs, using all of the breakthroughs i n  
software engineering, language theory, and artificidl 
intelligence. The problems here are many. First n o o n e  l \as 
developed an efficient automatic translation system. The few ~ J I I  

the market either are not completely automatic, or p r o d u c e  vcbr-v 
ugly and inefficient code. It is impossible for a computer ( a i i d  
even many humans) to translate a piece o f  Fortran c o d e  ~ 1 1 3 ~  

operates o n  different dimensioned arrays passed to the S ; ~ ; I I C  

subroutine with some EQUIVALENCE and COMMON usage. Further y o u  
don't want exact translations. Fortran programs were writterl 
within the limitations of Fortran, when in the newer l a n g ~ a g e s  
the algorithms can be expressed more clearly and efficiently. 
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The third, and most practical solution, which STO and a few 
others have adopted, uses an intermediate language that is easy 
to translate Fortran into, and allows for source code in others 
languages to be generated automatically. The intermediate 
language is the union of all other programming languages (and the 
trick i s  to create a useful union) with some extensions that 
reflect the nature o f  the algorithms. The benefits o f  this 
approach are many. First the original Fortran program has to 
rewritten only once, and then only parts o f  the program; most 
Fortrail code passes through without any change (i.e. assignmcf1t 
and simple IF statements). Software tools arc provided to C ~ J S ~  

this initial translation. Once in the intermediate langiinge, th(: 
algorithm can then be obtained in any other language 
automatically. 

Some of the conversions (as options) include array indict, 
reversal (where A(R(C,D),E(F,G)) in Fortran becomes i n  I: 
A[E[G][F]][ B[D][C]]), many precision support (constants appc~iclr.(l 
with E0,DO etc., subroutine and function names are suffixed, 
ABSR, ABSD, ARSC), and insertion of timing/frequency analysis. 
Manual conversion introduces errors, hindering the testing o f  t.tir0 
translated programs. 

Figure 1 shows an example of a subroutine from the Eisp;ick 
library in ten different languages. First, the subroutine is 
rewritten in STO's intermediate language, and is shorter Lhan 
most o f  the final programs. Then, the subroutine is automatically 
generated in the other languages (and back into Fortran). We 
have successfully converted Linpack (and its test drivers), a n d  
produced tested C, Pascal, Basic, and Fortran 77 versions (and i t  
anyone has compilers for other languages, we will provide the 
code for verification). 

What are the disadvantages of this approach? There are t w o  
main problems, which are present even if you adopt atiotticlr 
solutiori to converting Fortran programs. The first probleni is 
that m a n y  of  the newer languages are incapable of s u p p o r t i n g  
numerical algorithms a s  easily as Fortran does. Pascal does n o t  
a l l o w  subroutines to accept arrays of different sizes, m a k i r i g  
subroutine libraries all b u t  impossible (actually some P a s c i i l  
compilers do, b u t  there are at least two incompatible 
implementations). Modula-2, a (weak) attempt to fix Pascal, a l s o  
doesn't allow subroutines to handle different sized multiple 
dimensional arrays (only ID). Neither Pascal nor Modula-2 allow 
complex numbers (the suggested solution o f  using records and 
tiirning arithmetic expressions into scries of  siihroutine or 
function calls heing pathet-ic). 'I'hese languages also provide 
limited m u l t i p l e  precision slipport, and not the most useful 
l o o p i r i g  control struct.ures. Modula has no G O T O ,  and wtiilc most 
C;O'TOs can be removed from Fortran subroutines, some very 
i i n p o r t - a r i t .  subroutines have G O T O s  that are extremely diffi.cult to 
r e m o v e .  A t  least in C and ADA you can use CO'l 'Os for thcse tricky 
s ~ b r o u t i n e s  ( 1  ikc t h e  *INVIT algorithms in the Eispack library). 
f :  sul)ports Fortran programs well; its only deficiency i s  the lack 
o f  C O M P I , I < X  numbers used with t-*/ ( h i n t  A N S I  committee! ! ! ) .  
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The other main problem arises with A D A ,  A D A  has many 

powerful capabilities that forces you to start from scratch t o  
fully take advantage of A D A .  Generics, exceptions, and other 
features can only be generated if the intermediate language is as 
expressive as A D A ,  in which case just use A D A / D I A N A  to begin 
with. Unfortunately there are many installations with millions 
of lines of Fortran code that probably don't need all of  the 
power of A D A ,  in which case automated translation becomes 
reasonable. Then languages like Occam (for parallel processing) 
require additional design considerations (in this case to 
efficiently use the parallel architecture). 

At STO, we are undertaking a project to convert SLATEC to 
multiple languages via the intermediate language: when 
successful, packages such a s  Spice, Nastran, and Gaussian 8 4  w i l l  
be converted. These projects are quite important to the design 
of the intermediate langauge in the translation challenges 
provided. It is important to realize that the recoding is a 
small part of the translation process. Creating software 
environments f o r  multi-languag- software maintenance is the more 
critical task. To do s o  will require flexible software 
generation programs, in particular, %e based on the use o f  an 
intermediate language. 

The approach taken by STO and others (Boyle at Argonnr, 
Waters at MIT,de Maine at Auburn, Diana for ADA, Lexeme) o f  u s i n g  
an intermediate language and associated software tools will a l l u u  
Fortran installations to move their Fortran programs i n t v  n e w  
environments with minimal problems. While not a p e r f e c t  
solution, i t  is less costly than having larger p r o g r a i n i n ~ r ~ g  
staffs, and more realistic than relying on completely autoinaLir 
translators. 
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TYPE ARRAYlDR IS ARRAY (INTEGER RANGE <>) OF REAL; 

INTEGER R A N G E  <>) OF REAL1 
TYPE ARRAYZDR IS ARRAY (INTEGER RANGE'<>, 

PROCEDURE ORTRNR (N: IN INTEGER; LOW: IN INTEGER: 
HIGH: IN INTEGER; A :  IN ARRAYZDR; 
ORT: IN OUT ARRAYlDR; Z :  IN OUT ARRAYZDR) 1s 

I, J, KL, MM, MP, MP1: INTEGER ; 
G: REAL ; 

BEGIN 
-- 
-- EISPACK SUBROUTINE ORTRAN IN ADA -- 
-- 

FOR J IN 1..N LOOP 
FOR I IN 1..N LOOP 

END LOOP ; 
Z(J,J) := l.OE+O ; 

Z(1.J) : 5  O.OE+O ; 

END LOOP ; 

FOR MM IN 1..KL LOOP 
KL := HIGH - LOW - 1 ; 

MP : p  HIGH - MM 
IF A(MP,MP - 1) i= O.OE+O THEN 

MP 1 
FOR 

END 
FOR 

END 

:= MP + 1 ; 
I IN MPl..HIGH LOOP 
ORT(1) :=  A(I,MP - 1 )  ; 
LOOP ; 
J IN MP..HIGH LOOP 
G := O.OE+O ; 
FOR I IN MP..HIGH LOOP 

END LOOP ; 

FOR I IN MP..HIGH LOOP 

END LOOP ; 
LOOP ; 

G : =  G + ORT(1) * Z(1.J) ; 

G : =  (G / ORT(MP)) / A(MP,MP - 1) ; 

Z(1,J) : =  Z(1.J) + G * ORT(1) ; 

END IF ; 
END LOOP : 

E N D  : 



ORTRND ( N ,  LOW, H I G H ,  A ,  ORT, 2) 
int N, LOW, H I G H  : 
d o u b l e  * * A  ; . .  I 

d o u b l e  **Z, *ORT ; 
( 

/ * * /  
/ *  

. .  

i n t  I, J, KL, MM, MP, MPl : 
d o u b l e  G ; 

EISPACK SUBROUTINE ORTRAN I N  C 

* /  
for ( J - 1 ;  J <= N; J +- 1 ) ( 

for ( I - 1 ;  I <= N ;  I +=I 1 ) ( 

1 
Z [ I J [ J ]  = O.OE+O ; 

Z [ J ] [ J ]  = l.OE+O : 
1 
KL = HIGH - LOW - 1 ; 
for ( MM = 1 ;  M M  <= KL; M M  += 1 ) ( 

MP = HIGH - M M  ; 
i f  ( A [ M P ) [ M P  - 11  ! =  O.OE+O) ( 

MPl = I!P + 1 ; 
f o r  ( I = MP1; I <= HIGH: I +n 1 ) ( 

1 
f o r  ( J = MP; J <= HIGH: J += 1 ) ( 

ORT[I] = A[I][MP - 11  ; 

G = O.OE+O : 
for ( I = MP; I < =  HIGH: I += 1 ) (  

1 
G = (G / ORT(MP1) / A[MP][MP - 1 ) ;  
f o r  ( I - MP; I < =  HIGH; I += 1 ) (  

Z [ I I [ J l  = Z [ I I [ J l  + G * ORT[I]: 
1 

G = G + ORT[I] * Z [ I ] [ J ]  : 

1 
1 

1 
1 
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SUBROUTINE ORTRND (N,LOW,HIGH,A,LDA,ORT,Z,LD~) 
INTEGER LDA, LDZ 
INTEGER N, LOW, HIGH 
DOUBLE PRECISION A(LDA.1) 
DOUBLE PRECISION Z(LDZ,l), ORT(1) 
INTEGER I, J, KL, MM, MP, MP1 
DOUBLE PRECISION G 

C 
C 
C 
C 
C 

190 

210 

290 

3 4 0  

3 8 0  
390  
400 
4 1 0  
4 1 1  

EISPACK SUBROUTINE ORTRAN IN FORTRAN 

DO 210 J = 1 , N 
DO 190 I = 1 , N 

CONTINUE 
Z(J,J) = 1.ODtO 

CONTINUE 
KL = HIGH - LOW - 1 
IF (KL .LT. 1) GOTO 411 
DO 410 MM = 1 , KL 

Z(J,I) = O.ODtO 

MP = HIGH - MM 
IF (A(MP - 1,MP) .EQ. O.OD+O) GOTO 400 

MP1 = MP t 1 
DO 290 I = WPl , HIGH 

CONTINUE 
DO 390 J = MP , HIGH 

ORT(1) = A(MP - 1.1) 

G = O.ODt0 
DO 3 4 0  I = MP , HIGH 

CONTINUE 
G = (G / ORT(MP)) / A(MP - 1,MP) 
DO 380 I = MP , HIGH 

Z ( J , I )  = Z(J.1) + G * ORT(1) 
CONTINUE 

G = G t ORT(1) * Z(J,I) 

CONTINUE 
CONTINUE 

CONTINUE 
CONTINUE 
RETURN 
END 

D.1.3.6 



PROCEDURE: ORTRNR ( )  
INTEGER ARC: N 
INTEGER ARG: LOW 
INTEGER ARG: HIGH 
ANY ARG: A 
ANY ARC: ORT/VAR 
ANY ARC: Z/VAR 

END PROCEDURE 
PUBLIC: ORTRNR 

PROCEDURE: ORTRNR 
INTEGER : I, J ,  KL, MM, M F ,  MPl 
REAL : G 

2 6 0  REM 
262 REM 
264 REM 
266 REM 
270 REM 
3 20 
340  
360  
380  
4 0 0  
4 2 0  
4 4 0  
4 59 
4 6 0  
4 8 0  
500 
520  
5 4 0  
560 
5 8 0  
600  
6 2 0  
6 4 0  
6 6 0  
6 8 0  
7 0 0  
7 2 0  
7 4 0  
7 6 0  
780 
so0 
8 2 0  
H Z  1 
8 4 0 

EISPACK SUBROUTINE ORTRAN I N  BASIC 

FOR J = 1 TO N 
FOR I = 1 TO N 

NEXT 
Z(J,J) = l.OE+O 

Z(1,J) = O.OE+O 

NEXT 

IF KL < 1 THEN GOT0 821  
FOR MM = 1 TO KL 

KL = HIGH - LOW - 1 

MP = HIGH - MM 
IF A(blP,MP - 1 )  O.OE+O THEN 800 

blPl = MP + 1 
FOR I = MP1 TO HIGH 

N E X T  
FOR J = MP TO HIGH 

G = O.OE+O 
FOR 1 = MP T O  HIGH 

N E X T  
C = (G/ORT(MP)) / A(MP,MP - 1) 
FOR I = MP TO HIGH 

Z ( 1 , J )  = Z(1.J) + G * ORT(1) 
N E X T  

ORT(I) = A(1,MP - I )  

G = G + ORT(1) * Z(1,J) 

N EX'T 
R E M  E N D  OF IF BLOCK 

N EX'I' 
K E M  E N D  01.' 11: I ~ I . O C K  
R E M  R E T U R N  

E N  D P K OC 1: D U K F 
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0 O R T R N R :  
P R O C  (N. LOW. HIGH. A .  O R T ,  Z )  ; 

, DCL ( N ;  LOW, H I G H )  FIXED BIN 0 5 )  ; 
D C L  A ( * , * )  F L O A T  DEC ( 6 )  : 
DCL (Z(*,*), OR"(*)) F L O A T  DEC ( 6 ) ;  
D C L  ( I ,  J ,  K L ,  MM, MP,  MP1) FIXED BIN ( 1 5 ) ;  
DCL G F L O A T  DEC ( 6 ) ;  

I 'X 

E I S P A C K  S U B R O U T I N E  OKTKAN 1 N  PLI 

" I  
D U J = l T O N ;  

DO I = 1 T O N  : 

END : 
Z ( J , . J )  = 1 . O E t O  : 

Z(1,J) = O.OE+O ; 

END ; 

I F  KL >= 1 THEN DO; 
DO M M  = 1 T O  KL ; 

MP = H I G H  - MM : 
LF A ( M P , M P  - 1 )  ! =  O.OE+O THEN DO: 

KL = H l C H  - LOW - 1 : 

M P 1  = M P  + 1 : 
DO I = MPL T O  I t I G I I  ; 

O R T ( 1 )  = A ( I , M P  - 1 )  : 
END ; 
DO J = MP TO H I G H  : 

G = O.OE+O : 
DO I = MP T O  H I G H  : 

C; = G t ORT(1) * Z ( 1 , J )  : 
END * 

G = ( i  / O R T ( M P ) )  / A ( M P , M P  - 1 ) ;  
DO I = MP T O  H I G H  : 

E N D  : 
Z(1,J) = Z ( 1 . J )  + G * O R T ( 1 ) :  

E N D  : 
E N D  ; 

E N D  : 
E N D  ; 

E k ' D  O R T R N K  ; 
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P R O C  O R T R N R  (N, LOW, HIGH, A :  ORT, 2); BEGIN 
ITEM N S : 
ITSM LOW S ; 
ITEM HIGH S ; 
TABLE A[*,*] F ; 
TABLE Z [ * , * ]  F ; 
TABLE ORT[*] F ; ' 
ITEM I S ; 
ITEM J S ; 
ITEM KL S ; 

L ITEM MM S ; 
ITEM MP S ; 
ITEM MP1 S ; 
ITEM G Y : 

I 1  II 

I t  I t  

II 

11 II 

II I t  

EISPACK SUBROUTINE ORTRAN IN JOVIAL" 

FOR J : 1 BY 1 WHILE J < =  N ;BEGIN 
FOR I : 1 BY 1 WHILE I <= N ;BE?IN 

END: 
Z[J,J) = 1.OEtO; 

Z[I,J] = O . f - ) E t O ;  

END: 
KL = HIGH - LOW - 1; 
IF KL >= 1 ;  BEGIN 
FOR M M  : 1 BY 1 WHILE MM < =  KL ;BEGIN 

MP = HIGH - M M ;  
IF A[MP,MP - 1 1  < >  O.OE+O; BEGIN 

MP1 = MP t 1 ;  
FOR I : MPl BY 1 WHILE I <= HIGH ;BEGIN 

END: 
FOR J : MP BY 1 WHILE J < =  HIGH ;BEGIN 

ORT[I) = A[I,I.!P - 11: 

C = O.OEtO; 
FOR I : MP BY 1 W H I L E  I <= H I G H  ; B E G I N  

G = G + ORT[I] * Z[I,J]; 
E N i ) :  
G = (C;  / ORT[MP]) / A[MP,MP - 1 1 ;  
FOR I : MP BY 1 WHILE I < =  HIGH ;BEGIN 

E N D ;  
Z[I,J] = Z[l.J] t G * OR1'[I]; 

E N D ;  
END 

\ID; 
. .* . 
1 . '  I t N  ; 
E N D  
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TYPE ARRAYlDR - SU?ER ARRAY [ I . . * ]  OF REAL8; 
TYPE ARKAY2DR - SUPER ARRAY [1 . . * ,1 . . * )  OF REAL8; 

PROCEDURE OKTRNR (N:INTECER; L0W:INTEGER; 
H1CH:INTEGER; VAR A:ARRAYZDR; 
'JAR 0RT:ARPAYIDR; VA R  Z:AERAY2DR); 

VAR I, J, KL, MM, MP, MP1: INTEGER ; 

BEGIN 
( *  

G: REAL8 ; 

EISPACK SUBROUTINE OZTRAN IN PASCAL 

" >  
FOR J :=  1 TO N DO BEGIN 

FOR I :- 1 TO N DO BEGIN 
Z[I,J) := O.OEtO ; 

END ; 
Z[J,J] := 1.OEtO ; 

END ; 

IF ( K L  > =  1 )  THEN BEGIN 
FOR MM :=  1 TO KL DO BEGIN 

K I A  :=  HIGH - LOW - 1 ; 

MP : =  HIGH - MM ; 
IF (A[MP,MP - 1 )  < >  O.OEtO) THEN BEGIN 

MP1 : =  MP t 1 : 
FOR I := MPl 1:' HIGH DO BEGIN 

OKT[I] :=  A[I,MP - 1 1  ; 
END : 
FOR J : =  MP TO HIGH DO BEGIN 

G : =  O.OE+O ; 
FOR I :=  MP TO HIGH DO BEGIN 

G : =  G t ORTII] * Z[I,J) ; 
END : 
C, :=  (G/OR'T[MP]) / A[MP,HP - I ] ;  
FOR I := YP TO HIGH DO BEGIN 

Z [ I , J ]  := Z [ I , J ]  t G * ORT[I); 
END : 

E N D  : 
END : 

END ; 
END : 

E N D ;  (PRTRNRI 



CONST NEIG - 
TYPE ARRAYlDR = ARRAY [l..NEIG] OF REAL; 
TYPE ARRAYZDR = ARRAY [l..NEIC,l..NEIC] OF REAL; 

PROCEDURE ORTRNR (N:INT ; L0W:INT ; H1GH:INT; 

\ 
A:ARRAY2DR; VAR 0RT:ARRAYlDR; 
VAR Z:ARRAY2DR); 

VAR 1, J ,  KL, MM, MP, MPl: INT ; 

(*  
G: REAL ; 

EISPACK SUBROUTINE ORTRAN IN MODULA-2 

"1  
BEGIN 

FOR J := 1 TO N DO 
FOR I := 1 TO N DO 

Z[I,J] :=  O.OE+O : 
END : 
Z[J,J) :=  l.OE+O : 

END : 
KL : p  HIGH - LOW - 1 
IF ( K L  >= 1) THEN 
FOR MM := 1 TO KL DO 

hi' := HIGH - MM ; 
IF (A[MP,MP - I] < >  O.OE+O) THEN 

MP1 :=  MP + 1 : 
FOR I := MP1 TO HIGH DO 

ORT[I] A[I,MP - 1) ; 
END : 
FOR J := M P  TO HIGH DO 

G :=  O.OE+O ; 
FOR T := MP TO HIGH DO 

G := G + ORT[I] * Z[I,J] ; 
END : 
G :=  (C / ORT[MP]) / A[MP,MP - 11 : 
FOR 1 :=  MP TO HIGH DO 

Z[I,J] := Z[I,J] + G * ORT[I] ; 
END ; 

END ; 
END ; 

END ; 
END : 

END 
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a-  - * 

-aaWmmmk-,-nw,-= 
XtkltE~lIlDR', %P OH'khRRATTDP, 
-VAR 2:ARRAYZDR) 

-VAR I, J, KL, MM, MP, MP1: -1NT 
% 
% 
% EISPACK SUBROUTINE ORTRAN IN TURING 
% 
% 

G: -REAL 

-FOR J : i . . ~  
-FOR I : i . . ~  

-END FOR 
Z(I,J) := O.Oe+O 

Z(J,J) :- l.Oe+O 
-END FOR 
KL : p  HIGH - LOW - 1 
-IF KL >6 1 -THEN 
-FOR MM : 1..KL 

MP := HIGH - MM 
-IF A(MP,MP - 1) -NOT - O.Oe+O -THEN 

MP1 := MP + 1 
-FOR I : MPl..HIGH 

-END FOR 
-FOR J : MP..HIGH 

ORT(1) := A(1,MP - 1) 

G :- O.Oe+O 
-FOR I : MP..HIGH 

G :- G + ORT(1) * Z(1,J) 
-END FOR 
G :=  (G/ORT(MP)) / A(MP,MP - 1) 
-FOR I : MP..HIGH 

Z(1.J) := Z(1.J) + G * ORT(1) 
-END FOR 

-END FOR 
-END IF 

-END FOR 
-END IF 

-END ORTRNR 
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-PROC ORTRNR = (-INT N, -INT LOW, “INT HIGH, 

-wlXr)l ‘co 

[,]-REAL b ,  -REF []-REAL ORT, 
REF [ , ]  REAL 2 ) - V O I D :  

EISPACK SUBROUTINE ORTRAN IN ALGOL-68 

-co - INT I ,  .I, KL, MM, MP, ElPl : 
I -REAL G 

-FOR J -+ROM 1 -TO N -DO 
-FOR I -FROM 1 -TO N -DO 

. Z[I,J] := O.Oe+O ; 
-OD : 
Z [ J , J ]  := 1.0e+0 : 

-OD : 
KL :=  HIGH - LOW - 1 : 
- I F  KL -GE 1 -THEN 
-FOR CIM -FROM 1 -TO KL -DO 

I.1P := HIGH - MM ;- 
-IF A[MP,MP - 1 1  N E  O.Oe+O -THEN 

ClP1 : =  CIP + 1 : 
-FOR I -FROW MPl -TO HIGH -DO 

URT[I) :=  A[I,MP - I ]  ; 
-OD : 
-FOR J -FROM MP -TO HIGH -DO 

G :=  O.Oe+O : 
-FOR I -FROM MP -TO H I G H  -DO 

G : =  G + ORT[I] * Z(I,J] ; 
G :=  (G/ORT[MP])-/ A[MP,MP - 1 1 ;  
-OD : 

-FOR 1 FROM MP TO HIGH -DO 

-OD : 
Z[I,Jl := Z[I,JI + G * ORT[I]: 

-OD : 
- - F I  : 
OD : 

- F I  : 
- K E T U R N :  ; 

E N D  

D. 1.3.13 



\ 
GSPC M a  Programming Guidelines 

1 

. 

Daniel H. Roy, Robert V. Nelson 

1 INTRODUCTION 

A significant Ada effort has been under way at Coddard for the last 
tvo years. To ease the center's transition tovard Ada (notably for 
future space station projects), a cooperative effort of half a dozen 
companies and NASA personnel vas started in 1985 to produce 
programming standards and guidelines for the Ada language. 

2 APPROACH 

Two parallel tracks were pursued: 

1. Coding style and Ada statement format. 

2 .  Portability, efficiency and vhole life cycle issues. 

Two documents have been produced so far, one for each track followed. 
This paper more specifically deals vith the second one. Both 
documents are similar in structure (closely modeled on the Ada LRN) 
and were greatly influenced by Nissen and Wallis guidelines ((NV]). 
Other documents also had some influence: 

o The rationale for Ada [Rationale]. 

o The IEEE Ada PDL recommended practices document [IEEE-9901. 

o Intermetrics BYRON user's guide [Intermetrics]. 

o Ada in practice (Ausnit, Cohen, Goodenough, and Eanes) 
I Sof tech]. 

o Using Selected Features of Ada INTIS]. 

o Intellimac's Ada style (Intellimac]. 

o Regulation for the management of computer resources in 
defense systems (MIL-STD-2167) 12167). 

Both drafts are currently being merged i n t o  an Ada Style document 
use by all projects at the NASA Goddard Space Flight Center. 

for 
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3 STRUCTURE OF THE DOCUMENT 

It was decided early on to model our guide on the Ada Language 
Reference Manual (LRM) for the following reason: 

1. The LRH gives us a frame of reference that is a standard. 
2. By following the LRM, ve can reasonably expect to be 

thorough. 

3. We intend to illustrate the L R M  jargon with good Ada code 
examples. 

Therefore, the document follovs the numbering of the LRM as closely as 
possible, including the appendices. Hovever, in spite of this 
convention, our Ada Programming Guidelines are sufficiently self 
contained that they can be read without the LRH. 

Chapters 1 to 14 of our document closely follov the corresponding LRH 
sect ions. 

Appendix A of the document (Language Attributes in the LRH) describes 
the recommended documentation keywords both for design (user oriented) 
and code (programmer oriented). 

Appendix B of the document (Predefined Pragmas in the LRH) illustrates 
the usage of pragmas. 

Appendix C of the document (Predefined Language Environment in the 
LRH) gives the Ada source code of a decision deferral package (package 
TBD). 

Appendix D of the document (Glossary in the LRH) is a glossary of 
terms used in the guide and not defined in the LRH. 

Appendix E of the document (Syntax Summary in the LRH) is a place 
holder for  the definition of "Ada LINT", an Ada style and programming 
practice analyser. After a consensus has been reached about the 
specification of the tool and its command language, this appendix vi11 
include: 

1. The APSE tool command language syntax and semantics 
definition. 

2. The directives embedded in Ada documentation, style 
specification files, etc. 

Appendix F (Implementation Dependent Characteristics in the LRH) 
identifies the links, waivers or modifications to the company 
standards made necessary by these guidelines. 
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Appendix G is a place holder for the definition of a "pretty printer" 
Utility. After a consensus has been reached about the specification 
Of the tool and its command language, this appendix will include: 

1. The APSE tool command language syntax and semantics 
definition. 

2.  The directives embedded in Ada documentation, format 
specification files, etc. 

Appendix H is an annotated bibiiogtaphy. 
The illustrated, recommended practices and guidelines suggest rules 
and provide examples of good Ada design and coding formats to promote 
readability, aaintainabili ty and, therefore, portability and 
reusability of Ada code. 

An effort was made to alleviate the bureaucratic burden (that so often 
mars software standards) by concentrating on the programmer's "need to 
understand1@ and relying on automated tools for the mechanical (and 
subjective) aspects of programming such as indentation, alignment of 
tokens, etc. Most such rules are to be localized in an Appendix 
(Pretty - printer Definition). 
Automated support from simple code templates and comment constructs to 
the definition of APSE tools are also considered. 

4 EXCERPTS FROM THE GUIDELINES 

Figure D.1.4-1 introduces the recommended comment constructs that 
allows simple tools to extract PDL or documentation from the Ada 
design or code. 

The document strives to complement the LRH by illustrating its jargon 
with examples whenever possible. Unless the rule is particularly 
obvious, a rationale is given (possibly in the form of a bibliography 
reference), and an exanrple is proposed. The rules are classified as 
either suggestions or strong recommendations. The latter are 
underlined for emphasis. 

Figure D.1.4-2 to D.1.4-5 show the typical form2.t of the rules given. 

The document also draws on the IEEE 990 document (Ada as a Design 
Language) to show the smooth progression from Ada design to Ada code 
where practical. Figures D.1.4-6 and D.1.4-7 show tvo examples 
adapted from the IEEE document. 

Finally, because efficiency issues pervade the LRM, the guide 
addresses the tradeof fs betveen readability, portability and 
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efficiency vhere appropriate. 

5 CONCLUSION 

The great richness of the Ada language and grammers for 
good-style examples, make Ada programming guidelines an important tool 
to smooth the Ada transition. 

- -  he need of pr 

Because of the natural divergence of technical opinions, the great 
diversity of our government and private organizations and the novelty 
of the Ada technology, the creation of an Ada programming guidelines 
document is a difficult and time consuming task. It is also a vital 
one. 

Steps must now be taken to ensure that the guide is refined in an 
organized but timely manner to reflect the groving level of expertise 
of the Ada community. 

____________-- - - -________ 
Daniel Roy is a senior member of the technical staff at Century 
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\ 2.7 COMMENTS 

Comments should convey information not directly expressible in Ada. 
The conventions given b e l w  are used throughout this document. 

(a) Use "--I" to indicate documentation (Intermetrics]. 
See Appendix A for the recommended documentation template. 

(b) Use n--*n to indicate PDL construct [Intermetrics]. 

Using Ada as a PDL has numerous advantages. See [IEEE-990]. 

In the example of a function stub belov, the three lines of the 
function specification are both documentation and PDL. 

subtype INQUIRED VAR TYPE is TBD.SOHE TYPE; 
function INQUIRE-INT-( --I Emurate DCL verb for integers --* 
PROMPT : STRINE --I ,-* 
) return INQUIRED VAR TYPE is --I -,* 
type TRY RANGE is range 1 .. TBD.HAX; -- Nr try 
INQUIRED-VAR e : INQUIRED - -  VAR TYPE := 0; 

--* Displays "prompt (min. .max): '' 

for TRY in TRY RANGE loop 
--* Get unconstrained value 
--* Validate and translate unconstrained value 
return INQUIRED VAR ; --* 

end loop ERROR LOGP; --* 

- -  

-- Value returned -- 
begin --* INQUIRE INT 

ERROR LOOP: --* Until good data or nr errors > max --* 

- end INQUIRE INT ; --* - 
See Appendix C for the definition of the decision deferral package 
(Package TBD). 

Figure D.1.4-1: Rule for comments. 
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3.2.2 Number declarations 

(a) DO not use numeric literals except in 5 constant declaration Of 
when; ----- f i b r i m u m  - gproprGte. 
This yields more readable and more maintainable code since a change in 
value will be localized to the constant declaration. 

-- Circle object characteristics 
RADIUS : constant := 10.0; -- meters (constant object) 
PI : constant := 3.14159; -- (This is a named number) 
CIRCLE AREA := PI * (RADIUS ** 2); -- (2 better than "TWO") - 

As a rule, using a constant object is better than using a named number 
vhich itself is better than using a numeric literal [NW]. 

Illustrating the LRM jargon. Figure D.1.4-2: 

4.4 EXPRESSIONS 

(a) Use parentheses to enhance the readability of expressions [NW]. 

X := (A + B) * (C / ((D ** 2) + E ) ) ;  

(b) Use static universal expression for constant declaration JNW].  

Universal expressions maximize accuracy and portability. Static 
expressions eliminate run time overhead. 

SMALL-STUFF : constant := 12 
KILO : constant := 1000; 
MEGA : constant := K ~ L O  * KILO; 

-- Better than "constant INTEGER : - I '  

Note that the declaration of object "MEGA" vould be less portable had 
KILO been declared as INTEGER since INTEGER'LAST could be less than 
one million on some target systems. 

Also note that the folloving declarations are more readable than they 
would be using the constants MEGA and KILO above. 

type MASS TYPE is FLOAT range 1.0 .. 1.OE12; -- Grams 
GRAMS : constant MASS-TYPE := 1.0; 
KILOGRAMS : constant MASS TYPE := 1 000.0 * GRAMS; 
TONS : constant MASS-TYPE-:= 1 - 000.0 * KILOGRAMS; 

Figure D.1.4-3: Discussing the rules. 
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CHAPTER 9 

TASKS 

(a) Use a task for: 

o modeling concurrent objects (such as airplanes in an airport 
simulation). 

o asynchronous IO (other tasks may run while the IO task is 
blocked). 

o buffering or providing an intermediary link between 
asynchronous activities (buffer, active link between two 
passive tasks). 

o hardware dependent, application independent functions (device 
drivers, interrupt handlers). 

o hardware independent, application dependent functions 
(monitors, periodic activity, activity that must wait a 
specified time for an event, vigilant activity, and activity 
requiring a distinct priority). 

o programs that run on a distinct processor. 

It is imperative that the methodology selected to develop multitasking 
systems minimize the number of tasks and provide guidance in the usage 
of the numerous tasking features of Ada. See [Cherry-841 for details. 

Figure D.1.4-4: Rules and bibliography. 
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(b) Encapsulate priorities in a package ( W ] .  

The LRH does not specifiy the number of priority levels. 
- -  

with SYSTEl4;use SYSTEM; 
package PRIORITY - LEVELS is 
--I Raise: 
--I 
--I 
--I 
--I Purpose: 
--I 
--I Portability: 
--I 
--I 
--I 
--I Notes: 
--I Change Log: 
--I Daniel Roy 1-mar-86 Baseline 

-- Makes sense here to shorten declarations 
- - I  Implementation dependent 

The folloving declarations can raise CONSTRAINT ERROR on 
some implementations since the number of priori’iy levels 
is not defined in tte LRH. 

Encapsulate implementation dependent priority definitions. 

Some declarations may have to be modified for systems featuring 
less than 16 levels, 
nay have to become equal to * - LOW in-an 8 levels system. 

For instance * HIGH and * HED priorities 

LOWEST : constant PRIORITY := PRIORITY’FIRST; 
HIGHEST : constant PRIORITY := PRIORITY’LAST; 
NR PRIORITY LEVELS : constant POSITIVE := HIGHEST - LOWEST + 1; 
AVERAGE : constant PRIORITY := NR - PRIORITY - LEVELS 
IDLE : constant PRIORITY := LOWEST; 
BACKGROUND LOW : constant PRIORITY := AVERAGE - 6; 
BACKGROUND-HED : constant PRIORITY := AVERAGE - 5 ;  
BACKGROUND-HIGH - : constant PRIORITY := AVERAGE - 4; 
USER LOW : constant PRIORITY := AVERAGE - 3; 
USER-HED : constant PRIORITY := AVERAGE - 2; 
USER-HIGH : constant PRIORITY := AVERAGE - 1; 
FOREEROUND LOW : constant PRIORITY := AVERAGE + 1; 
FOREGROUND-HED : constant PRIORITY := AVERAGE + 2; 
FOREGROUND-HIGH : constant PRIORITY := AVERAGE + 3;  
SYSTEH LOW-: constant PRIORITY := AVERAGE + 4; 
SYSTEM-HED : constant PRIORITY := AVERAGE + 5; 
SYSTEM-HIGH : constant PRIORITY := AVERAGE + 6; 

2; 

end PRIORITY - LEVELS; - - I  

-- Using priorities 
vi th  PRIORITY LEVELS; 
task NASCOH SERVER is --I Distribute NASCOM blocks 
pragma PRTORITY (PRIORITY - LEVELS. SYSTEM - LOW) ; ..... 

end NASCOH - SERVER; 

Figure D.1.4-5: Adding to Nissen and Wallis. 
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10.2.1 Example of subunits 

The following example is adapted from [IEEE-9901 and shovs how t o  
defer decisions at design time, using Ada as a PDL. 

with TRACKER DATA TYPES; use TRACKER DATA TYPES; 
procedure TAfiGET - TRACKER is - - I  Raaar e:ho processing 

ECHO : ECHO TYPE; 
SMOOTHED RAN-GE : SMOOTHED RANGE TYPE; 
SMOOTHED-ANGLES - t SMOOTHE~ - ANGLES - TYPE; 
package FILTERING ALGORITHMS is - - I  Could be later extracted from 

--I here and "wi th'ed" 
-- I 
--I 
--I 

- 
function RANGE SMOOTHING ( 
RAW ECHO : EFHO TYPE 
) return SMOOTHED - RANGE - TYPE; 

function ANGLES SMOOTHING ( -.-I May be a generic SMOOTHING 
RAW ECHO : ECiO TYPE --I function could be written. 
) return SMOOTHED - ANGLES - TYPE; --I 

end FILTERING - ALGORITHMS; -- I 
-- The following postpone implementation decisions -- Simple stubs could be written 
function IS - ECHO VALID ( 
RAW ECHO : E C H ~  TYPE 
) return BOOLEAN is separate; 

--I 
- - I  
-- I 

package FILTERING-ALGORITHMS is separate; 

begin --* TARGET - TRACKER ..... 
if IS ECHO VALID (ECHO) then --* 

else --* decoy ? 

SHO~THED-RANGE : = FILTERING ALGORITHMS. RANGE SMOOTHING (ECHO) ; --* 
SMOOTHEDIANCLES : =  FILTERIN~-ALGORITHHS. ANGLES-SMOOTHING (ECHO); --* 

--* log decoy candidate coordinates 
null; 

--* IS ECHO - VALID end i f ;  - ..... 
end TARGET - TRACKER; - - I  

Figure D.1.4-6: Using subunits and the TBD package. 
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Note that all types from the TRACKER DATA TYPE; package may have been 
fully described (using Ada as a da?a definition language and 
TRACKER DATA TYPES as a data dictionary). Another solution is to use 
the TBD-packgge I 

with TBD; 
package TRACKER - DATA TYPES is --I data dictionary 
--I Notes: 
--I Preliminary desjgn 

suhtype ECHO TYPE is TBD.RECORD TYPE: 
subtype SMOOTHED RANGE TYPE is TBD.REAL TYPE: 
subtype SMOOTHED-ANGLES TYPE is TBD.ARRA-Y-'i'YPE: - - ..... 

-- I end TRACKER DATA TYPES; - - 

Figure D.1.4-6 (cont.): Using subunits and the TID package. 
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Decision deferral 
Members of the list 
Can be INTEGER or ENUMERATION type 
We knov more about type nov 

but we still defer decisions 
about index and element types 

l We now knov ve'll need to overload ' I ( "  

I for our type. 

(b) Use generics as a decision deferral technique during design. 
[IEEE-990] 

generic --I Decision deferral 
type LIST TYPE is privatei --I Don't want to bother with details now 

function SOfiT ( -- I 
LIST : LIST TYPE --I 
) return L I ~ T  - TYPE; --I 

- - I  Notes: 
--I Preliminary design 

function SORT ( --I --* 
LIST : LIST TYPE --I --* 
) return LIST TYPE is --I --* - - - I  Notes: 

--I Preliminary design stub 
SORTED LIST : LIST TYPE; 

begin --* SORT - - 
SORTED LIST := LIST; 
return-SORTED LIST; -,* 

end SORT; --I -,* - 

The above generic unit can be further refined at detailed design time 
using the same kind of technique: 

-- Adapted from [JEEE-990] 
generic -- 

type ELEH TYPE is private; 
type INDEz TYPE is (<>); 
type LIST TYPE is array ( 

wi t h function-"<" ( 

-- 
-- 

INDEX-TYPE range <> -- 
) of ELEM TYPE; -- 

LEFT : ELEH TYPE; -- 
RIGHT : ELEH TYPE -- 
) return BOOLEAN; -_ 

function SORT ( -- 
LIST : LIST TYPE -- 
) return LIST TYPE; -- 

-- 

-- 

- - - I  Notes: 
- - I  Detailed design 

Figure D.1.4-7: Using generics to defer decision. 
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Ada EDUCATION IN A SOFTWARE LIFE-CYCLE CONTEXT 

Anne J. Clough 
Ada O f f  Ice 

The Charles Stark Draper Laboratory, Inc. 
555 Technology Square 

Cambridge, Hassachurtttr 02139 
(61 7) 258-2748 

ABSTRACT 

T h i s  paper d e s c r i b e s  some of t h e  e x p e r i e n c e  g a i n e d  t o  d a t e  f rom a 
comprehensive e d u c a t i o n a l  program under taken  a t  The Char les  S t a r k  Draper 
L a b o r a t o r y  t o  i n t r o d u c e  t h e  Ada’ language and t o  t r a n s i t i o n  modern s o f t -  
‘,‘“re eng I neer i ng techno logy  i n t o  t h e  development o f  Ada and non-Ada 
a k p l i c a t i o n s .  I n i t i a l l y ,  a c o r e  group, w h i c h  i n c l u d e d  managers, e n g i -  
n e e r s  and programmers, r e c e i v e d  t r a i n i n g  i n  Ada. An Ada O f f i c e  was 
e s t a b l i s h e d  t o  assume t h e  ma jo r  r e s p o n s i b i l i t y  f o r  t r a i n i n g ,  e v a l u a t i o n ,  
a c q u i s i t i o n  and benchmarking of t o o l s ,  and c o n s u l t a t i o n  on Ada p r o j e c t s .  
As a f i r s t  s t e p  i n  t h i s  process,  an in-house e d u c a t i o n a l  program was 
u n d e r t a k e n  t o  i n t r o d u c e  Ada t o  t h e  L a b o r a t o r y .  L a t e r ,  a s o f t w a r e  e n g i -  
n e e r i n g  c o u r s e  was added t o  t h e  e d u c a t i o n a l  program as t h e  need t o  
add ress  i s s u e s  spanning t h e  e n t i r e  s o f t w a r e  l i f e  c y c l e  became e v i d e n t .  
E d u c a t i o n a l  e f f o r t s  t o  d a t e  w i l l  be summarized, w i t h  an emphasis o n  t h e  
e d u c a t i o n a l  cpproach adopted. F i n a l l y ,  l essons  we have l e a r n e d  i n  
a d m i n i s t e r i n g  t h i s  program w i l l  be addressed. 

I n t r o d u c t i o n  

E a r l y  i n  1984, a l a b o r a t o r y - w i d e  commit tee was s e t  u p  a t  t h e  Charles 
S t a r k  Draper L a b o r a t o r y ,  I n c .  i n  Cambridge, Massachuset ts ,  t o  assess t h e  
impact  of Ada and t h e  advances i n  s o f t w a r e  techno logy  t h a t  t h i s  new 
DoD-mandated language would impose o n  t h e  development of s o f t w a r e .  As a 
r e s u l t  o f  recommendations of t h i s  commit tee and s u p p o r t  o f  u p p e r - l e v e l  
management, a c o n c e r t e d  e f f o r t  i s  b e i n g  u n d e r t a k e n  t o  b r i n g  t h i s  t e c h -  
n o l o g y  in-house.  A m u l t i - l e v e l  e d u c a t i o n  and t r a i n i n g  program has been 
s e t  up, Ada p r o d u c t s  a r e  b e i n g  e v a l u a t e d  and p rocu red ,  c o n s u l t i n g  and 
s u p p o r t  s e r v i c e s  a r e  b e i n g  p r o v i d e d  as Ada p r o j e c t s  become a r e a l i t y  a t  
t h e  L a b o r a t o r y .  T h i s  paper w i l l  c o n c e n t r a t e  on t h e  e d u c a t i o n  and t r a i n -  
i n g  e f f o r t s  t o  da te .  

Ada i s  a r e g i s t e r e d  trademark of  t h e  U . S .  Government (Ada J o i n t  P ro -  
gram O f  f i c e )  . 

0.1 .5 .1 



:.. 

sma 1 
for 

At the heart of Draper's educational plan was the formation of a 
1 ,  highly motivated and qual if ied group of individuals responsible 
supporting the introduction of Ada technology throughout the Labora- 

tory. A team of instructors from Raytheon/tiid-Atlantic Systems Faci 1 i ty 
and Raytheon/Equipment Development Laboratories assisted in this effort. 
Two courses were offered - a 16 to 20-hour Fundamentals of Ada tutorial 
for managers and an 80-hour Designing and Programming with Ada course 
for engineers and designers. Twenty managers and thirty 
engineers/designers participated in this initial phase. This groupI 
chosen from a wide cross-section of projects in the Laboratory, contin- 
ues to provide support to Ada activities. An Ada Advisory Committee 
chosen from this core group provides essential advice, feedback and sup- 
port to the overall effort. 

In order to coordinate, plan and implement all Ada-related activ- 
ities, an Ada Program Office was established. Education, training, and 
the acquisition of basic tools were first priorities. Video courses and 
computer-aided instructional aids were evaluated and purchased to s u p  
plement more formal education. An in-house course was developed, and 
compilers and other support tools were evaluated and acquired. In addi- 
tion, the Ada Office has followed closely and participated in the larger 
Ada community and publishes an Ada newsletter to keep the Draper techni- 
cal staff informed of developments in this area. Figure 1 presents the 
initial plan for the acquisition o f  Ada technology at $he Laboratory, 
and in fact, quite accurately describes what has happened during the 
past two years. 

A N 0  COURSES 

S O F X A R E  ?nOJ€C- 
A 1  CSDC 

E V A L U A l I O N  A N 0  
ACOUISlTlON 

DEVELOP A D A  
C W I S E S  6 0 1  

C E l S O N N f L  
CSDL S o r w A R E  counscs 

- 
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Daveloping an In-House Ada Currlculun 

Because Ada is a very large language and at times complex, i t was 
felt that tradltional trainlng techniques might not prove adequate. A 
three-tiered method was adopted which essentially takes a top-down 
approach to introducing the language. The first "pass" through the lan- 
guage presents an overall view. It concentrates on the need for a new 
approach in developing software and presents the history, development 
environment, and features of Ada. Initial exposure concludes with a 
look at simple, but complete, examples. The second pass studies Ada's 
features in more detail, but still does not emphasize syntax or grammar 
rules, or the more obscure, difficult, or infrequently used aspects of 
any language feature. A third and final pass then carefully examines 
each feature in detail dith sufficient time allowed for discussion, 
questions, and programming practice. 

In practice, this approach has proved to be very effective for 
several reasons. First, because of the structure of the course, it i s  
possible for students to choose the level of participation desired. 
Participants who attend the first portion of the course receive an over- 
view of the goals and features of Ada. Administrators, for example, 
often choose this level and find it appropriate for their purposes: they 
can exit the course with a cohesive set of knowledge. Those attending 
the first two segments of the course will learn to develop and recognize 
high quality software design in Ada from a conceptual viewpoint, rather 
than with an emphasis on detailed rules. This might be an appropriate 
level of detail for software project managers. Those participating in 
the entire course receive thorough hands-on training in the effective 
use of Ada, an essential requirement for the software practitioner. 

A second reason that this approach proved effective is the direct 
result of the richness and complexity of the language. It is necessary 
to understand language features at a high level. "Why do we have this 
feature?" "How will it benefit me as a developer of software to be able 
to use this feature? "Whare - in what context - will it be used?" If 
the instructor is not Careful t o  address these issues a t  t h e  beginning. 
it becomes very difficult to differentiate the forest from the trees, or 
lose sight of the trees themselves while we focus on a small portion o f  
one tree. In addition, the very fact that we "visit" a language feature 
at least three times during the entire course makes the practitioner 
ultimately comfortable with that feature. Initially, he/she may be 
struggling with the concept itself ("just what a generic?"), but 
ultimately it  becomes familiar and the software developer can begin to 
realize and appreciate the extra capabilities that many of these unfa- 
miliar Ada features provide to the developer. 

Texbooks selected for this course are: "Software Engineering with 
Ada" by Grady Booch and "Programming with Ada" by J .  G. P .  Barnes. 
These are supplemented by pertinent articles and materials throughout 
the course. The bibliography at the end of this paper lists some of the 
materials that have been used both in this course and in a separate 
software engineering course. 

0 .1 .5 .3  



Homework is an integral part of the Course. Students design and 
implement Ada applications of increasing complexity as the course Pro- 
gresses. Though first sessions of the in-house course and the core 
course that preceded it were hampered by the lack of a validated compil- 
er or even compiler that could handle the full Ada language, the 
availability Of a DEC VAX/VAX compiler now makes assignments more moan- 
ingful. Certainly hands-on work using a competent, t~lly-validated com- 
piler Is essential. Certificates are awarded to a ! '  participants in the 
course w h o  Satisfy homework requirements. This certificate is added to 
their Personnel records, thus providing more incentive to complete all 
homework assignments and enabling the Laboratory to identify those staff 
members with Ada expertise. 

Sixty hours of instruction are required for the entire course. 
Classes meet for 2 1/2 hours two mornings a week during working hours. 
Three sessions of the entire course have been given - approximately 110 
people have participated, 45 have completed the full course. 

Developing a Software Engineering Curriculum 

Ada education at Draper Laboratory is very definitely software 
neerirlg with Ada. The emphasis throughout is on "engineering" software 
for large systems and all features are introduced and taught in that 
context. Ada, of course, is unique in that it has been expressly 
designed with features to encouraze modern programming and software 
engineering practices. Designed for portability and reuse, prOviding 
effective encapsulation and data abstraction facilities, Ada has the 
potential to substantially change the way software is produced. As 
such, it is imperative that the importance of software design, the 
development of an appropriate Ada style, and the proper use of this lan- 
guage be emphasized in any Ada educational effort. Developing the "Ada 
mind-set" is important. As emphasized by many Ada experts and practi- 
tioners, a syntax-driven educational approach will not work and will 
most likely produce poorly constructed programs, disappointing results, 
and consequently negative feelings about the language itself. Software 
engineering therefore becomes a priority in our educational efforts 
throughout the entire Ada course, with each language feature discussed 
within this context. In addition, special sessions deal with Ada as a 
program design language, object-oriented design techniques, and investi- 
gating whether or not, and how well, Ada does meet the goals of software 
engineering. 

Having emphasized that our Ada educational approach is heavily soft- 
ware engineering driven, it is nevertheless necessary to assert that one 
course cannot d o  it all. It is not possible to provide in a single 
course of any reasonable length a complete treatment of Ada and a com- 
prehensive treatment of software engineering at the same time. Nothing 
less than changing the model of software design, development and mainte- 
nance acquired from previous language experience will suffice. Each 
sequential phase of the life cycle must be evaluated in terms of what 
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skills are required for effective and efficient production of software 
and the proper use of Ada. 

The Ada course introduced software engineering concepts that may not 
have been conscloutly considered by students before that time. However, 
the need for w software engineering knowledge became apparent. To 
that end, comprehensive software engineering training, not foreseen in 
the original Ada program plan, is being developed by the Ada Program 
Off ice. 

A software engineering course which deals with the entire life cycle 
has been added to Draper's educational program. Topics ranging from 
system definition, software costing and software standards to require- 
ments analysis, design, testing, maintenance and configuration manage- 
ment are covered. Tools that can aid or automate various portions of 
the life cycle are presented. 

The course was initially conceived as having a complete Ada orien- 
tation, both because it grew out of the Ada course and because it is 
being developed by the Ada Program office. However, widespread interest 
in software engineering by both Ada and non-Ada software developers led 
to a course that has both language-independent and Ada-dependent por- 
tions. 

An integral part of this course is a workshop that allows partic- 
ipants to apply both software engineering principles and Ada implementa- 
tion techniques to a real application as the course progresses. A space 
station command and control problem, adapted from an aDplication 
designed and implemented for MITRE Corporation by a Boston University, 
College of Engineering student team,2 was used for this purpose. An 
exercise had to be chosen that could be completed in a three-month time 
span but yet would be interesting enough and challenging enough to moti- 
vate the workshop members. Teams of approximately eight members each 
are given the documentation that has resulted from the system definition 
and scheduling phase of a project . This documentation is not complete; 
therefore one of the first things each team must do is get back to the 
"customers" -- (the instructors in this case) -- and f i 1 1  in the gaps 
that remain in the system description. Each team then develops the 
application -- conducts requirements analysis. designs the software 
architecture, does low-level algorithmic design, codes and tests the 
solution. A t  this point, the two teams swap Software and documentation, 
and each verifies the other team's software. Since the application is 
developed in Ada, the design portion of the course concentrates heavily 
on design methodologies and techniques sui table for developing Ada 
applications. Software requirements reviews, preliminary design 
reviews, detailed design reviews as well as testing and final reports 
are presented during regularly scheduled class sessions so that all mem- 
bers of the class can benefit from seeing the application progress 
through all stages of the life cycle. 

2 Ruane, Michael F .  and Vidale. Richard F . .  m s s i n a  M a :  1- 
on o f  TYDiCal C o m m a n d r t o n t r o l  Soft-. 
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Each presentat ion of a l i f e  cyc le  top ic  i s  comp le ted  b e f o r e  t h e  
workshop g r o u p  begins work i n  t h a t  port ion of t h e  l i f e  c y c l e .  C lasses  
meet for 2-1/2 hours two morn ings  a week d u r i n g  w o r k i n g  h o u r s  f o r  t h i r -  
teen weeks. The workshop t h e n  continues fo r  an add i  t i o n a l  month a t  
which t i m e  t h e  e n t i r e  c l a s s  r e c o n v e n r . ~  t o  r e v i e w  t e s t i n g  and f i n a l  
r e p o r t s  b y  the workshop p a r t i c i p a n t s .  The workshop schedu le  m i r r o r s  a 
30-30-13-25% 1 i f e  c y c l e  model -- one month f o r  r e q u i r e m e n t s  a n a l y s i s ,  
one month for des ign ,  2 weeks f o r  c o d i n g  and 3 weeks f o r  t e s t i n g .  

As i n  t h e  Ada course,  members can choose t h e i r  l e v e l  o f  p a r t i c -  
i p a t i o n  cons is tent  w i t h  the i r  own r e q u i r e m e n t s  and schedu les .  A p a r t i c -  
i p a n t  c a n  t a k e  p a r t  i n  t h e  language independent  p o r t i o n s  o n l y  or i n  t h e  
e n t i r e  c o u r s e  w i t h  or w i t h o u t  t i l e  workshop. E x e r c i s e s  a r e  p r o v i d e d  so 
t h a t  a l l  p a r t i c i p a n t s ,  whether  or n o t  t h e y  a r e  members o f  t h e  workshop, 
w i l l  g a i n  e x p e r i e n c e  a p p l y i n g  t h e  concep ts  t h a t  a r e  p resen ted .  C e r t i f -  
i c a t e s  w i l l  a g a i n  be p r e s e n t e d  t o  i n d i c a t e  p a r t i c i p a t i o n  and f u l f i l l m e n t  
o f  c o u r s e  r e q u i r e m e n t s .  

Lessons Learned -- Ada E d u c a t i o n  

A v e r y  p l e a s a n t  outcome o f  t h e  Ada e f f o r t  t hus  f a r  i s  an ever-grow- 
i n g  g r o u p  of  p e o p l e  w i t h i n  t h e  L a b o r a t o r y  who a r e  b e i n g  exposed t o  Ada 
and who a r e  becoming e n t h u s i a s t i c  about  t h e  language. T h i s  g roup  
i n c l u d e s  p e o p l e  a t  a l l  l e v e l s  and ac ross  a w ide  v a r i e t y  o f  a p p l i c a t i o n  
a reas .  Many were f r a n k l y  s k e p t i c a l  i n i t i a l l y  and have been impressed by 
Ada and i t s  power and promise, e s p e c i a l l y  i n  t h e  a rea  o f  t h e  m i s s i o n -  
c r i t i c a l  embedded systems t h a t  a r e  an i m p o r t a n t  p a r t  o f  t h e  L a b o r a t o r y ' s  
a c t i v i t i e s .  

A t  t h i s  po in t ,  we have had enough e x p e r i e n c e  i n  Ada e d u c a t i o n  t h a t  
we c a n  b e g i n  t o  assess i t s  e f f e c t i v e n e s s .  We can  l o o k  c r i t i c a l l y  a t  our  
c o u r s e  m a t e r i a l s  and see where they have been s u c c ? s s f u l  and where 
improvement i s  needed. We l i s t e n  c a r e f u l l y  t o  t h e  commerb+s o f  ou r  s t u -  
d e n t s  and a t t e m p t  t o  t a i l o r  t h i s  course so t h a t  i t  meets OUI c u r r e n t  and 
f u t u r e  needs. Some of what we have l e a r n e d  i n  t h i s  p rocess  t o l l o w s .  

I n  t h e  Ada cou rse ,  two areas o f  d i f f i c u l t y  f o r  t h e  b e g i n n i n g  s t u d e n t  
have caused u s  t o  make ad jus tmen ts  i n  t h e  p r e s e n t a t i o n  o f  cou rse  m a t e r i -  
a l .  The f i r s t ,  t h e  s t r o n g  t y p i n g  o f  Ada, wh ich  i s  i n i t i a l l y  f r u s t r a t -  
i n g ,  a c t u a l l y  becomes one o f  t h e  f i r s t  p l e a s a n t  s u r p r i s e s  f o r  t h e  
s t u d e n t .  Ada a l l o w s  us, a c t u a l l y  u r g e s  us, t o  d e f i n e  ou r  own d a t a  
t y p e s .  An o b j e c t  i s  g i v e n  a t y p e  when i t  i s  d e c l a r e d .  T h e r e a f t e r ,  an 
o b j e c t ' s  t y p e  i s  i n v a r i a n t  t h roughou t  program e x e c u t i o n .  Values o f  one 
t y p e  canno t  be ass igned  t o  v a r i a b l e s  o f  ano the r  t ype .  S tandard  opera -  
t o r s  canno t  be used w i t h  v a r i a b l e s  o f  d i f f e r e n t  t ypes .  For t h e  s t u d e n t  
accustomed t o  w o r k i n g  w i t h  languages t h a t  do n o t  have s t r o n g  t y p i n g  f e a -  
t u r e s ,  t h i s  seems v e r y  r e s t r i c t i v e  and he i s  a t  l e a s t  i n i t i a l l y  annoyed 
eve ry  t i m e  t h e  c o m p i l e r  f l a g s  a t y p i n g  e r r o r  and makes h im e x p l i c i t l y  
c o n v e r t  v a l u e s  from one t y p e  t o  ano the r  b e f o r e  an o p e r a t i o n  can be p e r -  
formed o r  an ass ignment  s ta temen t  can  be executed.  However, t h e  f i r s t  
t i m e  t h a t  t h e  c o m p i l e r  ca tches  a t y p i n g  e r r o r  t h a t  would have f o r m e r l y  
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s l i p p e d  through and become an e l u s i v e  bug i n  a l e s s  s t r o n g l y - t y p e d  l a n -  
guage. a new c o n v e r t  t o  s t r o n g  t y p i n g  i s  won. 

The second d i f f i c u l t y  for t h e  new s t u d e n t  i n v o l v e s  t h e  i n p u t / o u t p u t  
f e a t u r e  of  Ada. T h i s  has n e c e s s i t a t e d  more emphasis o n  i n p u t / o u t p u t  
e a r l y  i n  t h e  c o u r s e  i n  r e c o g n i t i o n  t h a t  even s i m p l e  programs need some 
r u d i m e n t a r y  I/O. S i n c e  input/output i n  Ada uses packages and g e n e r i c s  
as w e l l ,  I/O can  be c o n f u s i n g  and can  seem n e e d l e s s l y  awkward t o  a s t u -  
d e n t  accustomed t o  w o r k i n g  w i t h  a language w i t h  b u i l t - i n  i n p u t / o u t p u t  
f a c i l i t i e s .  Time spen t  f a m i l i a r i z i n g  t h e  s t u d e n t  w i t h  e x a c t l y  how t h i s  
works  i n  Ada not o n l y  eases h i s  f r u s t r a t i o n s  b u t  a l s o  p r o v i d e s  h im w i t h  
a n  example and model o f  a n  use o f  packages and g e n e r i c s .  T h i s  can be 
v e r y  h e l p f u l  i n  u n d e r s t a n d i n g  and u s i n g  these  concep ts  l a t e r  on. 

The p rob lem of p r e s e n t i n g  t o p i c s  i n  an optimum sequence i s  n o t  a 
t r i v i a l  one, both i n  terms o f  m a i n t a i n i n g  c l a s s  i n t e r e s t  and a p p l y i n g  
t h e  c o n c e p t s  p resen ted .  As a n  example, i n  o r d e r  t o  cove r  Ada t y p e s  com- 
p l e t e l y ,  much m a t e r i a l  must be p resen ted .  However, i f  some e f f o r t  i s  
not made t o  d i s p e r s e  t h i s  m a t e r i a l  t h roughou t  t h e  d e t a i l e d  p o r t i o n  o f  a 
course,  r a t h e r  t h a n  p r e s e n t  i t  i n  a s i n g l e  b l o c k ,  i t  w i l l  s u r e l y  be d i f -  
f i c u l t  t o  m a i n t a i n  i n t e r e s t .  The " d i v i d e  and e v e n t u a l l y  conquer" 
approach t o  Ada's  t y p i n g  t o p i c s  a l s o  b e n e f i t s  t h e  s t u d e n t  when d e r i v e d  
t y p e s  a r e  p r e s e n t e d  a t  enough d i s t a n c e  f rom t h e  concep t  o f  subtypes s o  
t h a t  t h e  two do  n o t  become h o p e l e s s l y  muddled. An a d d i t i o n a l  c o n s i d e r -  
a t i o n  i s  t h a t  o f  a l l o w i n g  s u f f i c i e n t  t i m e  t o  a p p l y  those  f e a t u r e s  cov-  
e r e d  a t  t h e  end o f  any cou rse .  T h i s  can be a s e r i o u s  p r c b l e m  i f  t a s k i n g  
i s  t h e  l a s t  t o p i c  p r e s e n t e d  as i s  t h e  case i n  many Ada c u r r i r u l u m s .  
S i n c e  most programmers t e n d  t o  t h i n k  i n  a s e q u e n t i a l  manner and tend t o  
have t h e  most d i f f i c u l t y  d e a l i n g  w i t h  concur rency  and t h e  i ssues  concur -  
rency  r a i s e s ,  p u t t i n g  t h i s  t o p i c  t o  t h e  end o f  a cou rse  w i l l  n o t  g i v e  
t h e  s t u d e n t  s u f f i c i e n t  t i m e  t o  a p p l y  these  new concepts.  Not  o n l y  w i l l  
s t u d e n t s  be u n a b l e  t o  a p p r e c i a t e  Ada's  t a s k i n g  f a c i l i t y ,  b u t  they w i l l  
a l s o  have r e a l  h e s i  tancy t o  use t h i s  f e a t u r e  a t  a1 I when b e g i n n i n g  t o  
d e s i g n  systems i n  Ada. 

We have found t h a t  s t u d e n t s  a t  a l l  l e v e l s  want more complete and 
c o n c r e t e  examples o f  good Ada systems. "Real" w o r k - r e l a t e d  examples a r e  
e s p e c i a l l y  h e l p f u l .  The exper ienced  programmer wants t o  c o n c e n t r a t e  on 
t h e  u n i q u e  f e a t u r e s  of Ada - -  he p r e f e r s  t o  l e a r n  on h i s  own t h e  s i m p l e  
s ta temen ts ,  c o n s t r u c t s  and exp ress ions  t h a t  a r e  s i m i l a r  t o  those  found 
i n  most h i g h  o r d e r  languages. S tuden ts  would l i k e  each Ada c o n s t r u c t  t o  
be accompanied by many examples o f  i t s  use - -  t h e  Language Reference 
Manual s y n t a x  fo rma t  supplemented by many more examples wou ld  b e  u s e f u l .  
The Ada-unique packag ing  and g e n e r i c  f e a t u r e s  have p roven  t o  be a c c e s s i -  
b l e  t o  most s t u d e n t s  who v e r y  q u i c k l y  p e r c e i v e  t h e i r  power and b e g i n  t o  
use these  f e a t u r e s  e f f e c t i v e l y .  E x c e p t i o n  h a n d l i n g ,  and t h e  way Ada 
implements i t ,  a lways i n i t i a t e s  l i v e l y  d i s c u s s i o n .  W h i l e  q u i t e  v a \ i d  
cancerns  about  t h e  misuse o f  t h i s  f e a t u r e  a r e  o f t e n  expressed,  s t u d e n t s  
soon produce code t h a t  uses t h e  e x c e p t i o n  h a n d l i n g  f e a t u r e  e f f e c t i v e l y .  

T a s k i n g  i s  perhaps t h e  most d i f f i c u l t  f e a t u r e  f o r  new s t u d e n t s  o f  
Ada. Many t r a d i t i o n a l  languages do n o t  have f e a t u r e s  t h a t  a l l o w  p a r a l -  
l e l  p r o c e s s i n g .  Because o f  t h i s .  most programmers have a g r e a t  d e a l  o f  
e x p e r i e n c e  - -  o r  a l l  o f  t h e i r  e x p e r i e n c e  - -  i n  s e q u e n t i a l  programming. 
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This lack of  experience in programming concurrent p r o c e ~ s e s ~  coupled 
with the unique problems that can arise such as deadlock, starvation and 
timing considerations, make this feature a difficult one to both teach 
and learn. I t  has been necessary to expand this portion of the curric- 
UlUm. A tool developed at Draper, which graphically shows tasks Operat- 
ing concurrently and explicitly shows such things a s  actuation, 
suspenrlon of tasks, rendezvous, and termination, has helped the educa- 
tional effort in this area. However, an advanced Ada course which would 
concentrate in large part on tasking should perhaps be considered. 

Lessons Laarncd -- Software Engineering Education 

Although we have not had as much experience with the software engi- 
neerlng course as with Ada education, the first session of this course 
has been very successful. Participation, as has also been the case in 
our Ada educational efforts, has included a wide cross-section of the 
Laboratory both in terms of application areas and job level. Managers 
are participating both in the course and in the workshop, as are entry- 
level engineers and programmers. A great deal of enthusiasm centers 
around the workshop approach as this provides a convenient mechansim to 
apply techniques and tools discussed in class in an essentially "no- 
risk" situation. There is a great deal of learning that takes place in 
the workshop groups, as people with diverse backgrounds and experience 
are taking part. In the classroom as well. much information exchange is 
taking place and a wide range of expertise is being tapped. This combi- 
nation has resulted in a very effective learning forum. The Ada Program 
Office is coordinating the course and supplying most of the instruction: 
however, a number of presentations given by experts both within the Dra- 
per community and outside as well, have greatly enhanced the course 
offerings. Through the very active participation of its members, all 
participants in the course are being challenged to think about the way 
they are currently developing software. In addition, any new methods 
being presented, whether they be requirements analysis, design or test- 
ing methods, are subjected to the most rigorous scrutiny. "Will this 
method work as advertised by its proponents?" "Will it  work in the type 
of application that I develop?" 

As mentioned earlier, participants can choose their own level o f  
participation. Though course developers had assumed that members who 
had no familiarity with Ada would choose to participate in the lan- 
guage-independent portions only, in actuality most members have opted 
for the entire course. Because of this, several sessions were added to 
familiarize non-Ada participants with Ada's unique features. An unex- 
pected side effect appears to be a group of people interested in regis- 
tering for our next Ada course. 

Have we presented these two courses in the correct order? Shouldn't 
a software engineering course precede a course in Ada? Although this 
will be the case for the group of people just mentioned, in general, the 
opposite approach has worked quite well. First of all. the Ada course 
has a good amount of software engineering content. In addition, having 
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t h e  m a j o r i t y  o f  course p a r t i c i p a n t s  conversant w i t h  Ada has enab led  US 

I n  this second course t o  conrlder a number of d e s i g n  me thodo log ies  
U n i q u e l y  s u i t e d  t o  Ada, has enabled us t o  conduc t  a n o n - t r i v i a l  workshop 
i n  Ada and has al lowed us t o  d e a l  w i t h  some of  t h e  more advanced and 
d i f f i c u l t  a s p e c t s  of t h e  language, e s p e c i a l l y  i n  t h e  t a s k i n g  area.  

Future P l a n s  

. 
AS Ada a p p l i c a t i o n s  c o n t i n u e  t o  be i n t r o d u c e d  in to  t h e  L a b o r a t o r y ,  

t h e  Ada Program O f f i c e  w i l l  c o n t i n u e  i t s  e f f o r t s  i n  e d u c a t i o n  and i t s  
e f f o r t s  t o  p r o v i d e  a more s u p p o r t i v e  programming env i ronmen t .  I n  Ada 
i t s e l f ,  an advanced cou rse  c o n c e n t r a t i n g  h e a v i l y  on t h e  t a s k i n g  aspec ts  
o f  t h e  language and p r o v i d i n g  more guidance o n  d e v e l o p i n g  embedded 
a p p l i c a t i o n s  may need t o  be added t o  t h e  c u r r i c u l u m  a l r e a d v  developed. 
U t i l i z i n g  t h e  l o w - l e v e l  f e a t u r e s  o f  t h e  Ada language may need c l o s e r  
e x a m i n a t i o n  as w e l l .  For t h e  cou rse  a l r e a d y  "on t h e  s h e l f , "  t u n i n g  and 
t a i l o r i n g  f o r  D r a p e r ' s  p a r t i c u l a r  requ i remen ts  w i l l  be a c o n t i n u i n g  p r o -  
cess.  The top-down, t h r e e - l e v e l  approach has p roved  q u i t e  e f f e c t i v e .  
Perhaps a s e p a r a t e  course f o r  a d m i n i s t r a t o r s  o r  a s e p a r a t e  course f o r  
managers w i l l  need t o  be g i v e n  a t  some point  i n  t h e  f u t u r e  -- ou r  essen- 
t i a l l y  modular  approach wou ld  make t h a t  v e r y  easy t o  p repare .  Con t inu -  
i n g  seminars sponsored by t h e  Ada o f f i c e  p r o v i d e  an o p p o r t u n i t y  f o r  
t hose  who w i l l  n o t  be u s i n g  Ada immed ia te l y  t o  keep t h e i r  Ada s k i l l s  up 
t o  d a t e  and enab le  those  p r e s e n t l y  i n v o l v e d  i n  Ada a p p l i c a t i o n s  t o  keep 
in fo rmed  about  new Ada methodologies,  t echn iques  and t o o l s .  

S o f t w a r e  e n g i n e e r i n g  w i l l  c o n t i n u e  t o  be emphasized. Growing i n t e r -  
e s t  w i t h i n  t h e  L a b o r a t o r y  ensures 3 r e p e t i t i o n  o f  t h e  s o f t w a r e  e n g i n e e r -  
i n g  cou rse  d i s c u s s e d  i n  t h i s  paper.  I n  f u t u r e  sess ions ,  d i f f e r e , \ t  
a p p l i c a t i o n s  may be g i v e n  t o  each team so t h a t ,  i n  t h e  t e s t i n g  phase, 
teams can  t e s t  a p p l i c a t i c n s  t h a t  t hey  have not developed.  S ince  t h e  
ma jo r  t h r u s t  o f  t h e  s o f t w a r e  e n g i n e e r i n g  cou rse  i s  on t h e  requ i remen ts  
a n a l y s i s ,  d e s i g n ,  imp lemen ta t i on  and t e s t i n g  p o r t i o n s  o f  t h e  l i f e  c y c l e ,  
f Q J r t h e r  cou rses  o r  i n t e n s i v e  seminars c o u l d  be added on t h e  system d e f i -  
p i t i a n  and s c h e d u l i n g  phase. The s o f t w a r e  p l a n n i n g  phase and s o f t w a r e  
c o s t  a n a l y s i s  c o u l d  be covered ir: more d e t a i l .  Review techn iques ,  main-  
tenance, s e c u r i t y  and c o n f i g u r a t i o n  management a r e  o t h e r  p o s s i b l e  t o p i c s  
f o r  f u t u r e  i n - d e p t h  coverage. P o s s i b i l i t i e s  f o r  f u r t h e r  g rowth  i n  
t r a i n i n g  and e d u c a t i o n  s u r e l y  e x i s t .  

C o n c l u s i o n s  

Exper iences  i n  e d u c a t i o n  and t r a i n i n g  a t  Draper L a b o r a t o r y  i l l u s -  
t r a t e s  t h e  e f f e c t i v e n e s s  and l o n g - t e r m  b e n e f i t  o f  e s t a b l i s h i n g  an i n -  
house c a p a b i l i t y  i n  t h i s  area.  Many t r a i n i n g  o f f e r i n g s  a r e  a v a i l a b l e  
t h a t  p r o v i d e  i n t e n s i v e ,  s h o r t - t e r m  t r a i n i n g  i n  Ada: fewer o f f e r i n g s  a r e  
a v a i l a b l e  i n  s o f t w a r e  e n g i n e e r i n g .  The long - te rm e f f e c t  o f  some o f  
t h e s e  o f f e r i n g s  i s  o f t e n  q u e s t i o n a b l e .  C e r t a i n l y  a f i v e - d a y  o r  two-week 

D . 1  .5 .9  



intenrive approach to teaching Ada will not really allow Stu- 
dents to either become comfortable with the new concepts presented Or to 
grapple with the more dlfficult issues. A course spread over a longer 
period of time -- our courses traditlonrlly have a 3-4 months Span -- 
allow the student ,time to assimilate new Ideas, raise questions and most 
importantly get real hands-on experience wi th non-trivial SPPl ications. 
In addl ti on, havi ng i n-house support for Ada and sof tware eng i n e w  i ng 
ensures that, long after a course has been completed, the instructor or 
instructors are available for consultation and assistance. This latter 
advantage cannot be overemphasized when new technology i s  being i ntro- 
duced I f  the desire is to truly assimilate and integrate that technology 
into the software development process. 

a 
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Towards A Software Profession 
by Edward V. Bcrard, EVB Software Enginccring, Inc. 

"Between the amateur and the professional ... there is a diflereticc not only in degree but in 
kind. The skilyul man is, within the function of his skill, a different intc,,jration, a d#irc.nt 
nervous and muscular and psychological organization ... A tennis player or a warclimakcr 
or an airplane pilot is an automatism but he is also criticism and wisdom." 

Bernard Dc Voto 
from "Across the Wide Missouri" 
119471 

"Liberty trains for liberty. Responsibility is the first step in responsibility. " 

William Edward Burghardt Du Bois 
from "Th: Legacy of John Brown" 
[ 19091 

"The absurd man is he who never changes." 

Auguste Maseille Barthelelmy 
from "Ma Justification" 
[ 18321 

"A professionul makes ir look easy." 

Source Gnknown 

"Old age and treachery will overcome youth a d  skill." 

Julian Levi 
Motto for the "65 Club" 

"Computer programming," as we know i t  today, is a little more than 35 years old. You 
might even say that, as an occupation, it is in its "late adolescence." Programmers. 
themselves, have been known to exibit all the symptoms of adolescents, e.g., arriving ;it 

work at odd hours, dressing in a unconventional manner, spouting technical gibberish th;it 
is 4 d o m  understood by anyone other than another programmer, refemng to themselves as 
"gurus" or "wizards," and an extreme loathing to accept anything that even vaguely 
.zsembles responsibility. These items may be collectively referred to as the "Ke;il 
Programmers Don't Eat Quiche" syndrome. 

To be fair, an increasing number of programmers have attempted to change their image. 
They have made i t  plain that they wish not o d y  to be taken seriously, but they also wish [o 
be regarded as "professionals." Even the term "programmer" has become passe'. Man). 
programmers, and their companies, now refer to programmers as "software engineers." 
(Note that this change in nomenclature is seldom accompanied by a corresponding change 
in job description.) 
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Put simply, changing the image of "programming" and programmers is a "tall order." Both 
the Software and the people who deal with it suffer from a severe case of "Rodney 
Dangerfield Syndrome," i.e., they get little if any respect. Hardware professionals oilen 
look at software as something that one "slathers on the hardware" to get the real product 
(i.e., the hardware) out the door. Even programmers have few qualms about stealing 
Software. People, in general, have a hard time recognizing software as a product. 

The attitude that "anyone can be a programmer" is still very prevalent in our culture. The 
only credentials one seems to need to call oneself a programmer are a general familiarity 
with the syntax of a programming language, a rudimentary knowledge of a text editor, and 
enough exposure to an operating system to invoke a compiler. Most programmers are 
totally lacking in skills such as software design, software testing, software maintenance, 
software quality assurance, error analysis, metrics, and configuration management. 

Our work seems to be cut out for us. If we wish software professionals to be considered 
professionals in every sense of the word, two of the major obstacles we will have to 
overcome will be: the inability to think of software as a product, and the idea that little or no 
skill is required to create and handle software throughout its life-cycle. 

Professions and Professionals 

If we are going to address the issue of professionalization, we must first define what i t  is 
we mean by a profession and by a professional. A logical place to start is the dictionary. 
The 1979 version of Webster's New Collegiate Dictionary provides two common 
definitions for a profession: 

"a calling requiring specialized knowledge and often long and intensive 
academic preparation," and 

1. 

2. "a principle calling, vocation, or employment." 

Unfortunately, the second definition more accurately describes the "software profession" a s  
i t  exists today. There are, however, a small, but growing, number of organizations whrrc 
the first definition is more appropriate. These organizations have found that an engineermg 
approach to the software life-cycle is not only less chaotic, but cost-effective as well. 

Our dictionary also provides two definitions for a professional: 

1 .  "one that engages in a pursui' 3r activity professionally," i.e., one wlio 
conforms "to the technical or ethical standards of a profession," and 

"engaged in by persons receiving financial return." 2. 

I f  you have any dcdbt that the second definition more xcurately reflects the "soft\wrc 
professi~nal," of today, rnercly ask a software profesbional to list (or give a spccit'ic 
reference to) "the technical or ethical standards" of the profession. The Computer Socicty 
of the Institute flw Electrical and Electronics Engineers (IEEE-CS), has made a good  st;^ ;I[ 
defining some Oi the technical standards for the software profession. 'The Institute I'or 
Certification of Cwnputer Professionals (ICCP) rcquires that those who pass a written 
examination and "subscribe to the ICCP Codes of Ethics, Conduct, and Good Practic.c" 
may use the designation "CCP' after their names. These last two poirts illustrate t h a t  
attempts already have been made to establish technical and ethical standards for software 
professionals. 
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e &. We should also note that there will robabl be a need for paraprofessionals in the 
software industry for some time. (We i d  ster's efines a paraprofessional as "a trained aide 
who assists a professional person.") While we will acknowledge the probable need for 
paraprofessionals in the software industry, we will not discuss their required qualifications 
in this article. 

Characteristics of a Profession and Professionals 

If you were to interview a number of different professionals (doctors, lawyers, teachers, 
nurses, airline pilots, electrical engineers, and certified public accountants), you would find 
that their professions placed a number of requirements on anyone who wished to be 
considered a professional, including: 

0 a minimal level of training for entrance to the profession . Many profession\ 
require a minimum of a four-year college degree from an accreditcd 
institu:ion. Even those that do not specifically require  a college degrec often 
require many hours of training which may take years to accomplish. 

examination for lawyers, the CPA examination for accountants, and board 
Certification for medical doctors. I n  many professionr, certificarion is nor ( i  

one-rime affair, with professionals having to re-ccrirh, every one to rlircu 
years. 

0 some form of formal certification. The classic examples are the bar  

0 some form of conrinw'ng education or training . Just because a professional 
has acquired a college degree does not mean that he or she is finished with 
formal education. Teachers, lawyers, nurses, and other professionals ;ire 

often required to take a minimum number of courses per year to mainrain 
their certification. (Even if  college courses are not required, t i i n s !  
professionals must keep current with their profession. Imagine ;it1 

accountant who is unaware of the most recent changes in the tax laws, or :i 
doctor who was not up-to-date on the latest findings on a particul;ir 
antibiotic she was prescribing.) 

many forms. For example, it  shows up as "publish or perish" for colle:c 
and university professors, successful diagnosis and treatment for doctors, 
and the won/lost record for attorneys. Professionals must demonstrcirc t i i t ir  
rhey can pracricnll-y apply thc trainin# rcquircd for their prcgkvsinn. 

0 some minimal level of proof of perjbrmunce. Proof of performance can take 

. conjhrmance roprofession~il srurulclrds . Prior to admission to a profcssioii. 
a candidate will probably be made aware of the standards (e.~:. .  
methodologies, metrics, and levels of quality) for the profession. I'hc 
certification process will most likely test the candidate's knowledge ot rlicsc 
standards. U p o n  being accepted into the profession, the professional will bc 
expected to conform to the existing standards, and to keep abreast of ~ i i i y  
changes to these standards. 

0 adherence to professionul ethics. Webster's defines ethics as "a set of moral 
principles or values." Professional ethics involve such items as the 
professional's obligations to his or her client, the social responsibility of the 
professional, the relationship of p ro fes s io~~~l s  to their employcrs, and acts 
which might discredit or degrade the profession. 
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the taking of responribiliry and acceptance of liability. Professicrlals take 
direct rcsponsibility for their actions. The profession, as a whole, usually 
provides some form of established guidelines and acceptable limitations on 
responsibility to guide the professional. Professionals may also be required 
by some municipal, state, or federal laws to take on some amount of 
additional responsibility. Examples of professional responsibility can be 
found almost daily in any newspaper account of an event which caused 
harm to one or more individuals, or in which some law was broken. Classic 
examples include plane crashes, bank failures, and medical malpractice 
cases. 

The profession itself typically provides a number of benefits to its members, including: 

the establishment of a number of professional societies. Professional 
societies provide a number of services for their members. (In fact, when 
people speak of a profession they are often refemng to the professional 
societies for that specific profession.) They sponsor continuing education 
for their members, publish professional journals and other periodicals, 
provide a forum for the members to express opinions and influence the 
profession itself, and generally represent the interests of their members. 

used in a malpractice suit is that the professional was "following generally 
accepted professional procedures and guidelines." Professions also provide 
guidance in such areas as rights of ownership, items which will directly 
affect current practices, and career advancement. 

0 providing protection for its members. One of the the most common defenses 

maintaining public respect for the profession as a whole. The words 
"profession" and "professional" usually have positive connotations in thc 
mind of the public. This is no accident. Professions (both the professional 
societies and the membership in general) continually strive to maintain, and 
improve, the image of the profession in the mind of the general public. This 
translates into increased status and financial gain for the professionals 
themselves. 

Cook and Winkle (in their bwk,  Auditing PIiilosophy and Technique) observe that :  
"Professions are characterized also by the performance of intellectual services, as 
contrasted with manual and artistic labor. In addition, professions recognize a duty of 
public service and adopt a code of ethics generally accepted as binding upon their 
members." Later, in the same book, they make an interesting observation regarding thc 
American Institute of Certified Public Accountants (AICPA): "Frequently. state regulations 
are modeled after AICPA pronouncements. Many court decisions use the statements from 
the AICPA as criteria to evaluate public accountants and their work." This is (I po~vct-fi~l 
statement. It illustrates a precedent for a profession to directly influence outside 
governmental regulation of the profession. 
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Professionalization 

fiofessionalization may be loosely defined as the establishment, and adherence to, a 
professional model where one either did not previously exist, or was not firmly entrenched. 
In a professional model, the individuals who refer to themselves as professionals exhibit 
most, if not all of the characteristics of professionals mentioned in the previous section 
Further, there is a "professional atmosphere" which is established jointly by both the 
individual members of the profession and the existing professional societies. This 
professional atmosphere exhibits the characteristics of the profession, also described in the 
last section. 

A number of steps occur in the process of professionalization. These steps need not occur 
sequentially (i.e,, some may occur concurrently and some may even occur "out of order"), 
and (ideally) they should make use of work which has already been done. The following 
list of steps is usually required for pmfessionalization: 

1. n of for orofessionallzatron. This usually occurs when 
the need for highly-skilled, uniformly-trained individuals is recognized, 
i.e., the work performed by those already in the field becomes increasingly 
critical in nature. 

fo- of tbrofesslon . . .  
2. * . This will include establishment of 

standard terminology for the profession, creation of job titles and 
descriptions for profession members, and identifying relationships (e.g., 
profession to profession, professional to client, and the relationship of the 
profession ta the general public). 

rdentlflcatlon of ke- societia. These societies will 
hopefully have already achieved some degree of formal status (e.g., the 
respect of the professional community, the publication of useful periodicals, 
and the conducting of local and national meetings). These societies will 
prove invaluable in aiding the rest of the professionalization process. 

4. t of criteh. This must include such issues 
as: minimal formal education, minimal experience (apprenticeship), and a 
certification process. 

5 .  on of -. These 
can include existing college curricula and profession-approved continuing 
education programs. 

The certification process must be based on the minimum amount of uscl'ul 
skills and knowledge required by a "typical" professional. Tlic I C -  
certification process should be directed towards the career paths available to 
the professionals. The certification and education processes will obvioiisl! 
directly affect each other. 

. .  . . .  3. 

. .  

. .  

. .  . 6. the e w l  ishmnt of fo-nification (a nd re-certif icarion) uroc SdlIr'c.> 

7. the co Ilectinr and p r o m u l ~ i o n  of profess ion al sta ndards. Professiori;il 
standards encompass such items as: procedures, methodologies. metrics, 
acceptab!e performance levels, and tools. 
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8. 

9. 

10. 

11. 

12. 

13. 

h-varelevan t ' . A code of ethics for the 
profession must be establish-, and adhered to by the 
profession. Ideally, the profession's code of ethics will be incorporated into 
the certification process. 

a d  to meet 
s for rk 

(and hopefully exceed) some minimal set of performance goals to maintain 
their professional status. They must have some way of knowing how well 
they are doing in their chosen field. The profession must continually strive 
to improve itself as a whole (e.g., a decrease in the average error rate per 
member). 

. .  

. .  identifi~tion of r u i r e d  -P educdon (m a c o n t i n u l ~  v. No professions are static, especially the technical 
professions. The useful life of much professional knowledge continues to 
shrink. For example, it has been said that the technical knowledge of the 
human race doubles every four years. Typically, professionals are required 
to take a minimal number of prescribed courses per year to maintain their 
professional status. 

. .  . .  . 

. . . .  . . . .  
Professionals must be aware- to their clients, their 

ies and IiabilitieL. 

employers, other professionals, and to the profession in general. Further, 
they must be aware of the liabilities which come along with responsibility. 
Only people who are legally insane are not held accountable for their  
actions. 

f ie  est- for f l h  of prie vances. rem0 V a l  of 
Lndlvlduals frm the p r o h o n .  a n d e a l i n ?  both. The status of a 
profession is diminished by the inclusion of individuals who no longer meet 
standards established by the profession. 

hment a-ce of a ve ~u bl IC imap -g.  A profession 
with a positive public image can command better benefits for its members, 
including higher levels of compensation. 

. .  
* . .  

. .  . .  

While all of the above obviously take time to occur, they can be accomplished in a relatively 
short time, say within three to four years. This time can be further shortened by a focused 
effort on the part of the professionals themselves. 

Examples of Professionalization 

Examples of professionalization abound. Outside of the software industry, wc I1ave ;IS 
examples: the legal profession, the accounting profession, the medical profession, and the 
teaching profession. The professionals in these areas are lawyers, certified public 
accountants, doctors and nurses, and teachers respectively. Even a c a w n l  conversation 
with any individual associated with these professions would reveal that most, i f  not all, of 
the pints covered in the previous section are relevant to their profession. The mechiinisins 
and the nomenclature may vary from profession to profession, but the points thernselvcs 
still remain relevant. 



government. Quite surprisingly, professionalization'does not seem io occur at any 
consistent time in the existence of a discipline. For example, it took literally thousands of 
years before civil engineering became professionalized in the modem day sense, while 
ektrical  engineering became professionalized almost as soon as it was recognized as a 
separate discipline. 

A major factor in the speed with which a discipline becomes professionalized seems to be 
the environment in which it functions. For example, when electrical engineering first came 
into existence, other scientific and engineering professions were already f i i y  in place. 
These established professions provided paradigms for the creation of the electrical 
engineering profession. When one views the handling of software (and related issues) 
throughout its life-cycle as an engineering problem, we can easily see that paradigms 
already exist for the professionalization of those who are directly responsible for software. 
Further, this professionalization process should be taking place now, i.e., definitely much 
before 1990. 

Some of the steps necessary for professionalization are already in place. We have a number 
of professional societies. Computer science curricula at colleges and universities have been 
in place for snore than twenty years. (Although some schools offer some "software 
engineering" courses at the undergraduate level, it appears that none are offering 
undergraduate degrees in software engineering, and only a few are offering advanced 
degrees in the topic.) The IEEE-CS is actively involved in defining standards for the 
engineering of software. The Institute for the Certification of Computer Professionals 
(ICCP) and the Certified System Professional Program (CSPP), among others, have 
established model programs for the certification of software professionals. The Ada Joint 
Program Office (APO) has established a working group in Ada and softwaie engineering 
education. One of the issues that this group is looking at is the certification of Ada 
professionals. Finally, the Europeans are also exploring the idea of certification of 
computer professionals. 

Software Engineering and Computer Science 

For purposes of this article, I will restrict our attention on professionalization to threc: 
general categories of potential software professionals: computer scientists, software 
engineers, and software engineering management. It is not our intention at the moment to 
provide in-depth definitions of each of these professions. Instead, we will provide quick 
sketches of each, and leave the details to a later article. 

In discussing computer scientists and software engineers, we will differentiate the t \ v o  
using the paradigm of more "conventional" enginecrs and scientists. A scientist is chiell!, 
concerned with explaining current phenomena, predicting future phenomena, and general 1). 
improving the state of technical knowledge available to the human race. An engineer t:tkc\ 
the information supplied by scientists, and others, and uses this information to produx 
cost-effective, paragmatic solutions to real-world problems. (These are obviou\ 
oversimplifications, but they will suffice for now.) 

c. 'kVB Sri l~warc Enginccring. Inc. I986 
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A computer scientist might be looked upon (most simply) as an applied mathematician. 
Some would rightly say that, with the disappearing differences between hardware and 
software, that some areas of computer science encompass a good deal of computer 
hardware technology. For ow purposes, a computer scientist has a minimum of a four-year 
degree in an approved computer science curriculum (e.g., the ACM 1978 curriculum) from 
an accredited college or university. (Remember, the degree alone is not enough to make one 
a professional.) 

A computer scientist might specialize in compiler design, queueing theory, operations 
research, or language-driven hardware architectures. While a computer scientist might 
focus on the details of some aspect of computer science (e.g., algorithm design), he or she 
might not have an immediate practical application for the technology they are uncovering. It 
is very likely, though, that this uncovered technology can be used in some existing, or 
soon to exist, practical application. (Just as a physicist studying the quantum mechanics of 
molecular collisions might produce results which have applications in gas lasers.) 

Just as "conventional" scientists build on the work of other scientists, a computer scientist 
most often builds on the work of other computer scientists. This means that an error 
introduced via carelessness or faulty analysis on the part of one computer scientist can have 
drastic consequences even outside of that computer scientist's immediate area of 
specialization. Keep in mind that software permeates our very existence. (It has been said 
that the average American comes into contact with at least "two dozen computers" every 
day.) In addition, computer science technology is being used in increasingly critical 
application areas (e.g., pacemakers, cruise missile guidance systems). 

Software engineering, like any engineering discipline, involves a mixture of technologies. 
The basic background of a software engineer requires: computer science, mathematics, 
engineering disciplines (e.g., design methodologies, metrics, error analysis), 
communication skills, imagination, problem solving skills, ingenutiy, and a respect for 
simple, pragmatic solutions to real-world problems. Software engineers, like their "more 
conventional" counterparts, has a minimum of a four-year degree from an accredited 
college or university. Unfortunately, the few software engineering degree programs that 
currently exist are almost exclusively graduate programs. 

Software engineers may be charged with any number of tasks, e.g., the developing, 
testing, maintaining, measuring, or assuring the quality of a particular software system. 
They constantly find themselves integrating different technologies, making tradeoff 
decisions, and dealing with many different types of people (users, other engineers, 
managers). Most of the time they have a very tangible goal in sight. This goal must be 
reached within the (often unreasonable) limits on time, money, and other rcsourccs 
established at the begining of the project. 

Like computer scientists, software engineers build on the work of other software engineers 
(wirh the same serious implicarions). Like computer science, software engineering is a 
rapidly growing, rapidly changing discipline. The software engineer is being asked to 
apply his or her skill to increasingly critical applications, e.g.. life-support systems or the 
Strategic Defense Initiative ("Star Wan"). 

6 E V U  Software Engineering. Inc. 1986 
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Even with thc best-trained computer scientists and software engineers, the success of a 
project is not guaranteed. Poor management can ruin any project. The benefits of a truly 
professional technical staff cannot be realized without the support of professional 
management. While a successful professional software project manager need not be a 
technical wizzard, he or she must know who to hire, what to ask for, and what can 
reasonably be done with existing technology. We must be just as concerned with the 
professionalization of technical management as we are with the professionalization of the 
technical staff. 

As you can see, I have described a huge task: professionalization of software personnel, 
Le., computer scientists, software engineers, and technical managers. I want to now 
further narrow the scope of this discussion to the professionalization of software engineers. 
This is done primarily to keep this article from "becoming a short novel." However, much 
of what we have to say about software engineers will hold true for computer scientists and 
technical managers. 

The US. Department of Defense (DoD) has advocated a software engieering approach to 
their Ada@ effort. In fact, Ada is but one small piece of the DoD's Software Technology 
for Adaptable Reliable Systems (STARS) effort. We will use this a basis for our discussion 
for the professionalization of software engineering. Virtually everything we have to say 
will apply to the professionalization of all software engineers, regardless of whether they 
use Ada or any other language. 

The Motivation for the Professionalization of Ada Software Engineers 

There are several people who have a vested interest in the professionalization of Ada 
software engineers: 

0 the contracting office, 

. the software engineer's employer, 

0 the general public. 

0 the software engineers themselves, and 

One of the most difficult tasks for a contracting office is determining the real capabilities o f  
a potential contractor. A university degree is somewhat meaningful, but often thc 
contracting office is more interested in the actual "on-the-job experience." On-the-jot7 
experience is usually measured in the types of projects the personnel have previously been 
associated with, and the lergth of time the personnel have logged on each project. Tllcsc 
are, unfortunately, very crude metrics. 

If software engineers were professionalized, however, the contracting office's job would 
be somewhat easier. For example, i f  a potential contractor identified an individual as a 
software engineer, the contracting office might be able to make the following assumptions 
about that individual (depending on how the profession and its professionals have been 
defined) : 

%Ada I) a rcgisicrcd uadcmark of the U S Govcrnmcnl (Ada Joint Program Office) 
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b he or she has had a minimal amount ofducation at an accredited institution . 
Further, this education covered a specific set of known topics which were 
dinctly relevant to their job. 

0 he or she has known professional standarcis (ul(i guidelines to follow, 

he or she has gone through some known form of certijkation (and re- 

he or she must abide by a known set of professional ethics, 

he or she has had to exhibit some minimal level of performance in order to 

he or she will take direct responsibility (and liability) for their work, and 

he or she will be required to take a minimal amount of continuing educarion 

0 

cempcarion) process, 

0 

0 

remain in the profession, 

0 

0 

each year. 

In essence, the software engineer becomes more of a known quantity. (It is important ro 
realize that professionalization guarantees only minimal levels of quality. While this might 
not seem like much, remember two things. At present there are ILQ guarantees of any level 
of quality for any software "professional." Second, establishing a "floor for performance", 
tends to raise the "ceiling of performance" for the profession as a whole.) 

The employer of the software engineer has a number of reasons for being extremely 
interested in the professionalization of software engineers, including: 

all of the reasons lisred previously for the contracting agency. This makes 

while a professional might cost more than a non-professional rhey ure 

hiring much easier. 

usually much more cost-effective (i.e,, productive) than non-professionals. 
This does  not mean that all non-professional software engineers are not very 
productive. I t  means, depending on the effectiveness of the 
professionalization process, that the odds are greater that a professional will 
be more productive because he or she will most likely have been exposed to 
productivity increasing techniques. 

a professional is more likely ro hove a more mature, business-like (i.e I 
professional) arrirude. 

Software engineers will, of course, be interested in professionalization. Some of the morc 
important reasons, include: 

the ability IO know, in advance, the minimal crireria for  entrarice urd 
advancement in rhe profession. There will be a number of secondaiy 
benefits along this line. For example, i t  will be easier to coordinate college 
and university curricula with the demands of the job market. In addition, the 
requirements for advancement along 3 specific career path will be better 
defined . 

0 lijEVCI Software Engineering, Inc. 1986 - 
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the ability to determine how much an individual software engineer has 
improved over time. At present, few software enginecrs know how they 
"stack up" against their fellow software engineers. They also have little idea 
about how to improve their status (worth) in their chosen field. 

continuing basis. An active re-certification program will encourage (and 
obligate) software engineers to remain current in their field. 

the chance to learn new things, which are relavent to their profession, on a 

the protection and advice ofthe profession, 

known standardr, guidelines, and practices which are established by the 

the respect given to professionals, by  the public, and by  other 

0 

profession (i.e., not by some organization wirh little, or no, familiarity wirh 
current technology), 

professionals. 

The general public will be interested in the professionalization of software engineers for a 
number of reasons, including: 

0 

0 as taxpayers and consumers, the public is keenly interested in acquiring 
high quality software at the lowest possible price. We should not have to 
belabor the point that software is consuming an ever-increasing chunk of 
every tax dollar, and of every new modern appliance. 

are the result of erroneous sofware. If the general public had any idea how 
much of their daily lives, and their national security, depended on software, 
there would be an immediate large public outcry for professionalization. 

(e.g., airline pilots, doctors, lawyers). 

0 professionalization reduces the chance of major (and minor) disasters which 

0 the public, as a whole, is more comfortable dealing wirh professionds 

Who and What Needs To Be Certified 

The item which will probably evoke the most controversy in the professionalization process 
is that of certification. Before we go any further we should define what we mean by 
certification. The certification process for the software engineers and technical managers 
themselves will probably be not unlike that currently used in other professions, i x . :  

0 It will require that the candidates have a minimum level of formal educarion 

Candidates may have to serve an apprenticeship (residency) for some prc- 

A written examination, possibly spanning several days, will def'initcly be ;I 

Personal and professional references may have to be supplied. 

. 
specified period of time. 

requirement. 
0 

0 

0 The candidates will have to sign a document saying they will adhere to a 
professional code of ethics. 

GEVB Software Engineering, Inc. IY86 
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Other documents that may have to bc signed might Kddress items such as 
professional conduct, acknowledgement of professional responsibility and 
liability. 

b The candidates may have to demonstrate that they are covered by any 

If this is a re-certification process, the candidate will have to demonstrate 

appropriate insurance policies (e.g., malplractice insurance). 

that he or  she has taken appropriate continuing education courses within the 
time limits specified by the profession. 

If, for example, we focus on the Ada community, we find that certification can be applied 
to a number of items, including: 

b Ada and software engineering courses, 

Ada and software engineering cumcula, 

the instructors for these courses and cuIiicula, 

b 

b 

b the graduates of these courses and curricula (managers as well as 
technicians) and, 

e the software, standards, and procedures created by, or used by, members of 
the profession. 

How Can Professionalitation Be Accomplished 

We have previously discussed a number of things that will be necessary for 
professionalization. To assure that the process itself is as effective as possible, we will 
have to consider the following: 

b There must be some form of quality assurance for  the entire process. 
Transcripts will have to be verified. The quality and appropriatenesq of any 
written tests will have to be monitored. 

0 Someone will have to track and analyze the results of the professionalization 
process. For example, certified professionals will have to be interviewed to 
identify weaknesses in the system. 

0 /ndusrry, academia, und the government must be constaiirly polled f i ) r  
constructive feedback. 

0 The process must he icpciclted in a regular and tiniely nuriner. 

The Impact of Professionalization on the Ada Education Process 

The first large impact of the professionalization process will probably be in the area of Ada 
education. Why? The thrust of Ada technology is not the Ada language itself, rather i t  is the 
overall improvement of the handling of software throughout its life-cycle. An examination 
of the STARS effort shows that a large part of that effort is focused on the improvement of  
human resources. 
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Although Ada educators have been aware that Ada had something to do with software 
engineering, most have given token attention to the topic, c.g., !hey mentioned the terms 
"abstraction" and "information hiding" frequently during their courses, but failed to address 
topics like software quality assurance, testing, design methodologies, and software 
engineering mctrics. Profaswnalization will urrcioubtedly require an increased emphasis on 
sofware engineering, mathematics, and computer science in Ada curricula. 

One of the major mistakes made by Ada educators is the assumption that software 
engineering "will be taught in a separate course immediately prior to (or following) the 
'Ada course'." Professionalization will require that software engineering (along with 
ethics, standards, and mathematics) permeate the entire Ada cumculum. This wifl hqve a 
definite impact on the selection of instructors, and students, for these courses. 

Instructors will have to exhibit some qualifications in addition to a knowledge of the syntax 
of the Ada language. Indeed, the qualifications of an "Ada technology instructor" will be 
have to be quite vaned. Probably the least important part of the instructor's qualifications 
will be the knowledge of Ada syntax. Further, these instructors will have to go through 
some sort of certification process before they are allowed to teach. 

The students in a professional-onented Ada cumculum will find that they must meet some 
enmnce criteria before being admitted. In addition, they will most likely be graded during 
the course of their training, and may fail, Le., not be given credit, even though they 
attended the training. 

The Re-Certification Issue 

Re-certification does not mean giving the same test over again. Neither does i t  mean giving 
a "slight" variation on the same test to an individual who has previously taken, and passed. 
an earlier version of the test. Re-certification involves two broad areas: the recognition that 
software technology is extremely dynamic, and that a software professional may wish to 
advance along any one of a number of career paths. 

It has been said that, in 1963 the technical knowledge of the human race was doubling 
every ten years. In 1983, someone observed that the technical knowledge of the human 
race seemed to be doubling everyfour years. There is little doubt that our knowledge 01'  
software technology is increasing at a faster pace than technology in general. (Ironically, 
most software practicioners seem to be "stuck" somewhere in the 1960s ir, terms of the 
way they deal with software.) Therefore, like other professionals, software professionals 
will have to demonstrate that they are aware of the significant current trends in  their 
industry. Further, they will have to demonstrate proficiency i n  some of this I I C W  
technology, i.e., that which is directly related to their immediate job. 

This can be accomplished in a number of ways. Software professionals will, of coursc, bc 
required to take and pass a number of continuing education courses on a yearly basis. 
There will also have io be some way that they can successfully demonstrate proof of 
performance at their jobs. (As yet we have few metrics for his,  e.g.. management and IXCF 
evaluation.) A n  actual re-certification test will be required on a regular basis (possibly 
yearly, or every eightteen months). 
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Like any other professional, software professionals may wish to advance along a given 
care,er path, or change paths, Here one of the advantages of professionalization becomes 
obvious. The requirements for advancement along a given path, or for changirig career 
paths will be well-defined (at least much better defmed than they currently are). In the event 
that a Software professional wishes to change career paths, the re-certification process will 
require continuing education and a re-certification test as before. However, the 
demonstration of proof of performance may now encompass an apprentice period in the 
area of the new career path. 

The Difficulties Involved In Professionalization 

Even thcse who are favorably disposed towards professionalization will admit that a 
number of barriers to the process exist. It is important to realize, however, that most, i f  not 
all of these barriers can be successfully overcome. Here are a few of the more interesting 
problems we can expect to encounter: 

Deciding on methoh, procedures, and metrics will be one of the first 
obstacles we will encounter. The important thing to remember here is that 
there is no guarantee that we will recognize the best methods, procedures, 
and metrics when w e  see them. This means we will have to pick some 
"good-looking" trial examples and be prepared to change them. 

these costs will pale in comparison to the costs of ignoring the need for 
professionalization, e.g., the cost of malpractice suits and insurance. 

the number of areas for which they will be needed, Le., we will have to 
develop separate tests for software engineers, computer scientists, arid 
technical managers. 

Fortunately, we will probably have to define success as part of the 
justification process for professionalization. This means that this problem 
will be considered early (and solved early). 

current programmers and managers, will be a major (if not the major) 
difficulty we can expect to encounter. However, the impact of this difficulty 
will be lessened by two facts: most programmers and managers want to do 
the best possible job, and programmers are very goal oriented. Don't forget 
the advantages we listed earlier. 

prove to be an interesting problem. For example, what recourse does a 
certified professional have when he or she is instructed to do something 
which violates existing professional standards or ethics? 

The cost and logistics of professionalizarion will be staggering. Yet even 

The development of meaningful tests for certification will be complicated by 

Defining and determining success will be one of the biggest problems. 

Extreme initial resistance from those currently involved with sofware , i .e.,  

The interaction of certified professionals with non-certified managemerit will 

Mainraining a high level of quality throiiglwiit the entire professionnlizarion 
process is yet another item. This will be a classical "who will watch the 
watchers" problem. It can be solved by appointing an independent group of 
quality assurance people at the begining of the process, and giving them the 
authority needed to accomplish their mission. 
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@ 
a Alternatives to Professionalization 

One of the more obvious questions is: "What happens if we ignore the issue of 
professionalization? Will it just go away?" Unfortunately the answer is m. In addition to 
not realizing all of the benefits listed earlier in this article, there are two main problems we 
will have to deal with: the very real possibility of government regulation of the software 
industry, and an increased impetus for the automation of the software process. 

One of the main reasons the AICPA was founded was the realization that the federal 
government was seriously considering the regulation of the accounting profession. By 
accomplishing formal professionalization (via the AICPA) accountants tealized two goals. 
First, the accounting profession was able to provide its own regulation, instead of being 
regulated by those with little knowledge of their industry. Second, whenever municipal, 
state, or federal governments must develop laws which directly or indirectly affect the 
accounting profession, they consult the AICPA. It is not uncommon to sei A ICPA rules 
and regulations quoted directly in laws governing the accounting industry. It would not be 
V U  . .  software inshay c o w l i s h  the sam~ goa Is via its own 
vofe  ss1 onallzatlon. 
The forces that shape technology are seldom technological. They are more often political, 
economic, or sociological. If the software industry generally refuses to advance itself 
through professionalization, the public may react by placing an increasing emphasis on 
automating as much of the software process as possible, e.g., the increased use of fourth 
generation languages and off-the-shelf software. This can, and will, mean a direct loss of 
jobs in the software industry. (This will occur anyway. However, we do not necessarily 
wish to accelerate the process.) 

Recommendations 

What recommendations are to be made? The following will serve as a starting set of 
recommendations: 

0 We must begin at o n w  with positive results to be visible within two years . 
Specifically, the "average programmer" and the "average manager" shou Id 
be affected by the professionalization process before the end of 1987. 

ar:;lysts, managers, educators, government, professional societies. and  
other, more established professions. 

e We must solicit input from many source s. Included must be programmers, 

The process midst be pithlicized and iiigiily visible. 

. A professionalization maintenance committee must be establi.shcd. Tt ic j ob  
of this committee will include tracking changes to the professionaliz~tioii 
process, introducing these changes in an orderly manner, and acting ;is ;i 
"supreme court" for any professionalization matter disputes. 

0 Encourage the esruhlishmetrt of software engineering cirrric.iilri 0 1 1  ti; l  

undergruduate level. Further, encourage the concept of professimalisni or1 
all forms of software education. 
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The Inpact o f  Camon c\psE Interface Set Specifications on 
Space Station Information Systems. 

by 
Jorge L. Dia t -Her rera  and Edgar H. S i b l e y  

George Mason U n i v e r s i t y ,  Fa i r fax ,  VA 

ABSTRACT 
C e r t a i n  t y p e s  o f  s o f t w a r e  f a c i l i t i e s  a r e  needed i n  a Space S t a t i o n  

I n f o r m a t i o n  Systems Environment; t he  Common APSE I n t e r f a c e  Set (CAI:) has 

been p r o p o s e d  as  a means o f  s a t i s f y i n g  them. T h i s  p a p e r  d i s c u s s e s  how 

r e a s o n a b l e  t h i s  may b e  b y  e x a m i n i n g  t h e  c u r r e n t  C A I S ,  c o n s i d e r i n g  t ? e  

changes due t o  t h e  1 a t e s t R e q u i r e m e n t s  and C r i t e r i a  (RAC)  document,  and 

p o s t u l a t i n g  t h e  e f f e c t s  on  t h e  new CAIS 2.0. F i n a l l y  a few a d d i t i o n a l  

comments a re  made on the  problems inhe ren t  i n  t h e  Ada (*) language i t s e l f ,  

e s p e c i a l l y  on i t s  d e f i c i e n c i e s  when used  f o r  i m p l e m e n t i n g  l a r g e  

d i s t r i b u t e d  process ing  and database app l i ca t i ons .  

1. INTROOUCTION 
C e r t a i n  types o f  sof tware f a c i l i t i e s  a r e  needed i n  a Space S t a t i o n  In fo rma t inn  
System E-ivironment (SSISE). Not the l e a s t  o f  these are: 

a. the d i s t r i b u t i o n  o f  t he  t a r g e t  and hos t  f a c i l i t i e s  f o r  b o t h  the  run- t ime and 
development environment, 

5. t he  abso lu te  need fo r  good con f igu ra t i on  management methodology t o  c o n t r o l  
t h e  development and use of  the  many vers ions  o f  t he  so f tware  and t o o l s ,  

c. t h e  need t o  develop and modify systems wi th in d i s t r i b u t e d  environments ~ s i n 3  

s o p h i s t i c a t e d  t e r m i n a l  interfaces,  
d .  a consequent need fo r  good in te r faces  and standards, a b s t r a c t  data t y p i n q  in 

a d i s t r i b u t e d  system ( i n c l u d i n g  develoement and run- t ime b ind ings) ,  
e. a r e a l - t i m e  d i s t r i b u t e d  so f tware  development methodology, and correspondin? 

language support and opera t i ng  environment and t o o l  cons t ruc ts ,  

f. good human t o  human and machine t o  machine communication techniques. 

-_----------- 
* Ada is a Reg is te red  Trademark of  t he  US. Governmenk, 

Aaa J o i n t  Program O f f i c e  
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&cause SSISE development w i l l  use Ada as i t s  imp lemen ta t i on  language, i t  Would 

b e  e x t r e m e l y  u n f o r t u n a t e  i f '  i t s  needs were  n o t  a d d r e s s e d  I n  t h e  Ada 

Set (CAIS). This paper is s t r u c t u r e d  around the  f o l l o w i n g  t h r e e  major  aspects: 
1. How w e l l  a r e  these needs addressed within t h e  c u r r e n t  CAIS s p e c i f i c a t i o n ?  

Indeed, would a poor f i t  have a bad e f f e c t  on the  Space S t a t i o n  so f tware? 

2 .  What improvemen t  can  be e x p e c t e d  due t o  changes mandated b y  t h e  l a t e s t  
Requirements and C r i t e r i a  (RAC) document? 

3. W i l l  t h i s  t r u l y  a f f e c t  the  nex t  CAIS (ve rs ion  2.0)? 

environments now under s p e c i f i c a t i o n  and development: t h e  Common APSE I n L  a - C ? c ?  

2. SPACE STATION IWOWATICN SYSTEMS ENVIl?C"T fEEDS A N I  ME CAIS 
The Space S t a t i o n  S o f t w a r e  Work ing  Group and NASA s o f t w a r e  s p e c i a l i s t s  have 

r e c e n t l y  de f ined t h e i r  needs fo r  support o f  space s t a t i o n  so f tware  development 

[ D i x o n  851, and p roduced  a d e f i n i t i o n  o f  t h e  space s t a t i o n  s o f t w a r e  s u p p o r t  

environment requirements [Chevers 861 i n  e a r l y  1986. The major  i ssues  i n c l u d ?  

a s p e c t s  a b o u t  g e n e r i c  e l e m e n t s  o f  t h e  e n v i r o n m e n t ,  t o o l  c h a r a c t e r i s t i c s  and 

c o n s i d e r a t i o n  o f  the f o l l o w i n g  major questions: 
- Should a un i fo rm NASA So f tha re  Development Environment fo r  space s t a t i o n  be 

de f ined and developed? Issues r e l a t i v e  t o  t h i s  inc lude:  

* Sof tware  development fo r  the  space s t a t i o n  w i l l  be h i g h l j  d i s t r i b u t e d ,  

* Major  so f tware  p o r t i o n s  w i l l  be managed by var idus  centers  and no t  by  a 

with no l o c a l i z e d  s i n g l e  dwe lopment  group. 

s i n g l e  NASA center. 

these need comple te ly  separate sof tware environments. 
* I m p o r t a n t  f u n c t i o n a l  d i f f e r e n c e s  e x i s t  between major s o f t w a r e  systems; 

- How much o f  the  space s t a t i o n  so f tware  development environment should 3t 
fu rn ished by NASA? 
* T n i s  had a major impact because NASA has never developed i t s  own SDE. 

2.1 THE S I S E  AND ITS REQUIRfM3JTS 

Desp i te  the  fac t  t h a t  the s p e c i f i c a t i o n  o f  a s i n g l e  standard environment may 
i n v o l v e  s o l v i n g  many p r o b l e m s ,  t h e  w o r k i n g  g r o u p  f e l t  t h a t  t h e  p o t e n t i a l  

advantages fa r  outweigh the  d i f f i c u l t i e s .  There was the re fo re  a recommendation 

for the d o f i n i t i o n  o f  a we l l -de f ined development environments w i th  c a p a b i l i t y  

fo r  two classes of user: 

0.2.1.;2 



- SDE interfaces to support software developers and their managers. These 

were to consist of: 
Mail and Telecommunication support (e.g., editors, file systems, 
communications aids, etc.) 
Technical management/control aids (e.g., cost models, project management 
and planning systems) 
Data base support (e.g., file management, retrieval, control, 9tc.I 
Modeling/simulation aids (e.g., Architecture models, testing aids, etr.) 
Prototyping aids (e.g, requirements, specs, man/machine interface, etc.)  
Oocument preparation aids 
Requirements specification validation and analysis aids 
Design specification aids (e.g, PDL analyzers, data dictionary, etr..; 
Code construction and control aids (compilers, linkers, configuration 
managers, etc.) 
Program &alysis/testing and integration aids (path coverdge/tzsC 
generators, symbolic executors, etc.) 
Metrics (quality, complexity, cost and reliability measures) 
Man-machine interface support (interface and use of the environment, 
help, tutorial, etc.) 

- An SDE interface to support NASA software managers responsible for  s o f t w 3 :  ? 

requirements/acquisition/acceptance; this required essentially the ~ d l n r )  

capabilities as those above, with changes in emphasis or tailoring t ’ i e  

relative importance, complexity of function and response needs. Thus the 

management controls should be more heavily directed towarj sc’3erlulps, 
planning, project management, and PERT, while the modeling, p r o t o t y p i n q ,  c i r i  1 

simulation aids would be minimal ar unnecessary. 

Theso two interfaces can thus result from a single CONF ISURABLE t3nv i r t ,o t* I~” i ’  

w’lich is tailored to the specific necrls o f  each work station and local??. 

2.2 THE CUFiREEcT CAIS 
Several needs in the above list have not been addressed in the CAIS 1.5 

specification. These issues have been discusst-” at length in KIT (KAPSc  

Interface Team) and KITIA ( K I T  Industry and Academia Support) group rneetinqs 
but a r e ,  as yet, only partially resolved. In fact, many o f  t h e s e  der t ’  
deliberately excllJderl from discussion in the current CAIS document. They 3re: 



__-_. .... ~ .-._.fl-....- ..-. -.1 --.. . ~ . I  . . ... 

* A p a r t i c u l a r  Conf igu ra t ion  Management Methodology 
* S o p h i s t i c a t e d  Device Con t ro l  and Resource Management Capabi l i  t Les 

* D i s t r l b u t e d  Environments  
* I n t e r - t o o l  I n t e r f a c e s  
* I n  t e r o p e r a b  i 1 it y 

* Typing Methodology 
* Archiving 
These and o t h e r  i s s u e s  a r e  each  d i scussed  i n  t h e  dpt ,3 i led  s e c t i o n s  below. 

2.3 
A l t h o u g h  t h e  r e q u i r e m e n t s  o f  t h e  f i r s t  v e r s i o n  o f  t h e  CAIS were n e v e r  
e x p l i c i t l y  d e f i n e d ,  t h e y  wqre a m i x t u r e  o f  t h e  s p e c i f i c a t i o n  and  p a r t i a l  

i m p l e m e n t a t i o n  o f  t h e  ALS p r o v i d e d  by S o f t e c h  and t5e  A I €  u n d e r  d e s i g n  b y  

I n t e r m e t r i c s .  Thus ,  !-JF?C.3lJS2 these two  e f f o r t s  w9re a l r e a - l y  f u n d e d ,  t"ley 
in t roduced  s e v e r a l  problems !]?cause the CAIS s p e c i f i c a t  inn team were at tempt ,  ing 
t o  p r o v i d e  a s  much c o m p a t i h i l i t y  a s  p o s s i b l e  ' w i t h  t n e s p  t w o ,  s o m e w h a t  

d i f f e r e n t ,  a r c h i t e c t u r e s  o f  an e n v i r o n m e n t  ( w i t h  d i f f e r e n c e s  a l s o  i n  tnFj i7  
s c o p e ) .  I n  g e n e r a l  t h i s  a t t e m p t  may h a v e  i n t r o d u c e d  3 r o b l e m s  o f  u p w a r q  

c o m p a t i b i l i t y .  Thus t h e  f u t u r e  CAIS w i l l  e i t he r  ' lave t o  i g n o r e  t h e  n o r m a l  
needs of  a "s tandard" i n  dea l ing  w i t h  9 r equ i r ed  "upward c o m p a t i b i l i t y "  or  e l s f ?  

admi t  t o  s e r i o u s  d e f i c i e n c i e s  and p o s s i S l e  poor i n t e r f a c e s  i n  f u t u r e  s y s t i n s  

due t o  l a c k  of  adequate  c o n t r o l s  and func t ions .  

THE EFFECT OF THE RAC 

The  new r e q u i r ? m e n t s  were w r i t t e n  t o  a l l o w  m o r e  f l e x i 3 i l i t y  and  i ~ ? t : . ? r  
i n t o r f a c e s ,  w i t h  an  a t t e m p t  t o  h 3 v e  b e t t o r  f u n - t i o n a l i t y .  T h u s  t Q e  E n t i t y  

Mmagsment Support  ( s e c t i o n  4.  of t h e  RAC) r e q u i r ? s  a suapor t  t h a t  pa rod ie s  t w  
d e s z r i p t i o n  o f  a n o r n a l  da ta5ase  management system wi thout  s p e c i f i c a l l y  S 3 y i - l : j  

c.13: i t  i s  n2eded. Some 3f  :?e needs a r e  q u i t ?  s p e c i f i c  and  ( t iout2h CI,I&:I * . -  

i n t e r p r e t a t i o n )  qlJite e n c o m p a s s i n g ;  ~ 3 . 3 . ~  " impose  a l a t t i c e  S t r 1 J l ; t ' ~ r e  nn : . I ? - '  

t y p e s  d h i c h  i n c l u d e s  i n h e r i t a n c e  o f  a t t r i b u t e s ,  a t t r i h u t ?  v 2 l u o  r 5 : i g : x  

(posc>ibly r e s t r i c t e d ) ,  r e l a t i o n s h i p s  and a l lowed opera t ions ."  

Another type  o f  problem arisec,  hie ? ?  wish t o  al lovJ t' ie CAIS t n  be oper3910 on 
a lmos t  any c u r r e n t  COmm?rcial atrd e x ~ i ? r i m e n t a l  o p e r a t i n g  system: vliz, 'IT%? 

5 v c i  f i c a t i o n  sh311 be machin? independent and i m p l l 1 n e n t ~ t i o n  independen:. The 

CAI5 5n211 9e i v p l e m e 7 t a S l e  on bdre m a e h i n e s  and  on m a c h i n e s  w i t h  any  ? E  a 
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variety of operating systems.1f This could restrict the design in many 
unfortunate ways. 

2.4 TI€ E X l  CAIS 
It is difficult to peer into the future, and thus the following predictions for 
the next CAIS may prove incorrect, however, the degree of effort and choice of 
contractor (Softech) allows us to make some early assumptions. 

First, it seems unlikely that the contractor would make a new specification 
that would not allow the current ALS to be considered an "almost complier witn" 
or "minimal fix away fromt1 the new CAIS. 

Second, the level of funding and staffing is not one that would be expected :r, 

allow anything but the narrowest extension o f  the currerlt CAIS. 

Third, it is somewhat doubtful whether the politics o f  the situation wou! 1 

allow a large diversion from the Army's ALS. 

Fcrurth, the contractor has already suggested that divergence from some o f  - - ) e  

old C A I S  Specifications to go to the RAC statements would be difficillt. T ~ P -  

discussion of such issues at recent KIT/KITIA meetings has not been encour?:in; 
to a feeling of extension of the role o f  the CAIS. 

3. SPECIFIC DEFICIENCIES 

3.1 W I G U R A T I O N  HA"T 
The lack of a particular Configuration Management Met!lodology means t - l C i e  

several vendors could provide incompatible but "standard" systems. These i s q o a G  

seem, primarily, t o  devolve on a need for a long time naming continuity am!, i l  
gen?ral, software configur3tion management. The first issue is t h a t  i f  

providing "Unique Names" across geographic and time boundaries. Tho t 2rmn 

"l.rnique name" (UN) !>as Seen used to define an immutable name fnr an erititq; 
e.3., 3 compilPr should be uniquely identified 5y a UN, which neit:7er ci>a,i,lt=c; 

nqr is "recycled". Thus a UN is given out once to an entity and remains it.; 
name;  i f  tile 
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entity is deleted/removed, then the UN will still identify t t l e  
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e n t i t y ,  b u t  an a t t e m p t  t o  r e t r f e v e  i t  w i l l  r e s u l t  In a statement t h a t  I t  i s  no 
I longer a v a i l  ab l e .  

There a r e  two p o s s i b l e  problems: 

1. IS any s o r t  of change a l l owed  t o  an e n t i t y  w i t h o u t  I t s  UN changing? 
N o r m a l l y ,  the  c o n t e n t s  o f  t h e  e n t i t y  may b e  a l t e r e d ,  but t h i s  c o u l d  meqn 

t h a t  i t  is no longer  even s i m i l a r  t o  i t  prev fo i i s  "parent" e n t i t y .  C e r t a i n l y ,  

i t  seems reasonable t h a t  a program may be debugged w i t h o u t  changing i t s  name 

f o r  each e r r o r  detected. This would suggest that. the  unique name was r e a l l y  

a run - t ime  UN, which cou ld  be s a i d  t o  remain constant d1Jrh-g programming end 

debugging. However, i f  the UN were f o r  a da ta  e n t i t y ,  t h e  e f f e c t  o f  a chanqe 

i n  any one o f  its v a l u e s  w o u l d  b e  a new " v e r s i o n "  o f  t h e  e n t i t y ,  and thi,; 

Could be impor tan t  enough t o  be considered a new " e n t i t y "  though the  normdl 

way of  d e a l i n g  wi th t h i s  i s  t o  consfder the  da ta  e n t i t y  t o  be " t ime  and d a t 3  

s tamped ' '  w i t h  a n  a i i d i t  t r a i l  t o  a l l o w  t h e  p r e v i o u s  e n t i t y  t o  b o  
recons t ruc ted  (e.cj., f o r  r o l l  back).  

2 .  How are UN r e l a t e d  fo r  the same (but changed) e n t i t y ?  

There must be ;3 method fo r  data e r l t i t y  recons t ruc t i on  -- r o l l  Iiack from arl 

a u d i t  t r a i l ,  however, the data i n  a t r a d i t i o n a l  database must n o t  he c a l h j  
by p h y s i c a l  l o c a t i o n ,  b u t  5y "name po in te rs "  or indexes or " l o g i c a l "  k p y s  -- 
tnese m i g h t  be c o n s i d e r e d  t h e  IJN f o r  da ta .  On t h e  o t h e r  hand, t h e  o n l y  

" a u d i t  t r a i l "  f o r  programs i s  n o r m a l l y  p r o v i d e d  b y  t h e  c o n f i g l ~ r = ~ +  ~ [ J T  

lnanagement sys tem (CMS).  I n  fact., t h e  i d e a  o f  v e r s i o n  i n  a C M S  i s  a n o t i ? r  

way o f  l o o k i n g  a t  the unique name; i.e., the UN i s  l o g i c a l l y  equ iva len t  t o  3 

user name concatenated w i t h  the ve rs ion  number (or equivalent) .  

What !-as been suggested above about 3 UN f o r  bo th  program and data c w l d  315'1 

ho ld  for  c o n t r o l  s t ruc tu res .  

3.2 SOPHISTICATED DEVICE CONTROC 

S o n e  o f  t h e  b i g g e s t  p r o b l e m  a r ?  u n d o u b t e d l y  g o i n g  t o  be t h e  i n t r o d u c t i o n  I J ~  

more s o p h i s t i c a t e d  input /ou tpu t  and o the r  spec ia l  dev ice  dependent int;.t Faces 
(e .q . ,  f o r  a mouse). T h i s  w i l l  be  a p r o b l e m  when t h e r e  a r e  u n o s ~ ~ a :  3 1 ~ t  

s c g h i s t i c a t e d  i n t e r f a c e s  t o  dyvices and sensors. Un fo r tuna te l y ,  this issue wil l  
r,3qtJir? t oo  much d i s w s s i o n  t o  f i t  here and requ i res  a paper o f  i t s  own. 
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3.3 OISTRIBUTED ENVIROENNTS 
The development o f  Space Station Information Systems is bound to be highly 
distributed with no single group solely responsible for the required software 
systems. This could result in difficulties when looking at large and complex 
development and run-time environments. Discussions on space station softwarrJ 
development must address Distributed Environments (Host and Target) and 
particular ways to distribute data as well as control. The Ada Prograrnininij 
Support Environment (APSE), however, - does recognize such a need, and s t d t ~ ,  

that additional software tools are necessary i n  order to allow "indepenrltwt" 
program to communicate wit3 each other dynamicalty, in a "natlJr?l" doc! 

controlled way. The RAC states, however, that: " C A I S  proqram v x f 2 r u b  i o f ~  

facilities shall be designed to requiro no additional functionality in thP A%I 

Run-Time System (RTS) from that provided by Ada semantics. Consequently, t l t  J 

implementation of the Ada RTS shall be independent of the CAIS". .. 

TIiere are  some problems here with Ada itself. A distributed system c a n  1 1 1 ,  

designed and implemented in Ada from two different points o f  view, namely a s  , I  

single program or as a collection of  cooperating proqrams. The first o f  t h?v  

altornatives, single program, is particularly useful when considering t iqhr- i f  

coupled mu1 t iprocessor systems. Inter-processor communication a i l ' !  

synchronization can then be naturally achieved by using rendezvous. The  mi 

alternative is to design the system as several icdependent programs ( O I W  , I :!-  

processor). The Ada language, however, does not support the idea of indt~p:ivkii 
programs dynamically cooperating with one another ( i . ~ . ,  no const.r~I':t~., d r . '  

provided fo r  inter-program communication). 

Both approaches require further support from the environment. F o r  ~ ? x . j m p l r - . ,  

Specific target-oriented tools (e.$, loaders) are needed, to assist in to.' 
actual implementqtion on the distributed architecture. An Ada solution t.o til.: ; I '  

problems may be in the form O F  a set of  inter-program communication p r i m i t  i v ~ .  

provided a t  the APSE level in the program library. In qeneral, the d t 2 5 i q 1 i  ,in 1 

implemontat ion of a multi-processinq system as a collert ion of indt?pt.liilt!:l! 
programs present a number of inconveniences resulting in the fo l l r jw  in11 i t ; ( ; t J ( : ; :  

- Creat.im of "lingc~istic:" facilities to enable internrogr?ln colnlntIniI:at i I m  
- Provision 'OF a rnet.hodoloqy f o r  designing Distributed Systerns (Js inrJ  t ! l f ? L : t '  

r~ i 9' i r ?  r - 1 e vr: 1 p r i in i t i ve 5 ,  
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3.4 INTER-TOOL INTUFACE!j, I V I L I T Y ,  AN) TYPlffi ).fFHOOOLOGV 

These three issues represent the generic problem o f  the tool builder. When 
Several tools must interchange data, they must either do it via the Standard 
interfaces or else be designed as a suite of tools with total knowledge of  the 
data requirements and functionality of the other tools in the suite. In 
general, there are problems i n  defining inter-tool interfaces, Oecause a change 
to One tool may cause a ripple effect. However, reliance on interoperability 
interfaces entails passage of abstract data types across tool interfaces. This 
could have serious security and integrity repercussions. 

Interoperability also has severe impact on distributed systems, where the 
passage o f  abstract types may be essential for accurate and reliable datd 
interchange between the various nodes. Without a good typing methodology, it is 
obviously impossible to provide such features or to deal effectively with data 
base management and similar issues. The alternative to such methodology is o f  

course straight ASCII interchange, with negligable checking. Again, theso 
topics deserve a paper of their own. 

3.5 ARCHIVING 
This is an important issue in any configuration, but more so in a distribclt?<j 
environment of the kind mentioned here. However, for the purposes o f  t'7is 
paper, it will be left as another undiscussed issue. 

3.6 CENTRALIZATION AN) DECENTRALIZATION ISSUES 
Tne really tough problems of unique names of any of the types o f  entiti9s 
occurs when they are (in some way o r  another) decentralized. As an exdrn i i l ? ,  

when a compiler is moved to a new node, does its UN change? And whether i t  c;:ot35 

or not, which node controls or restricts the change? Obviously, the a1sw.r t 1 
such questions involves policy and method of  control. It is importdnt tiat t w  
controlled use o f  a distributed environment be effected through distributed 
kernels operating locally. It  is conceivahle that one or  more nodes woultl bP 

designated as decision making kernel(s1, while other nodes will b e  merely 
servers. T h i s  seems to provide a reasonable compromiw between centr--ll i7e 1 

(high communication costs and high vulnerability) and dcceritralized ( w i t h  i t 5  
cjnnecessary control burden on every node). 
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4. ADA LAK;uAGE IsslEs 
As d i s c u s s e d  ear l ier ,  there are some s e v e r e  p r o b l e m s  i n  u s i n g  Ada i n  
m u l t i p r o c e s s i n g  and  d i s t r i b u t e d  s y s t e m s .  From Ada ' s  p o i n t  o f  view, a 
m u l t i p r o c e s s o r  s y s t e m  which  u s e s  a common memory c a n  be v i ewed  a s  a 
"uniprocessor  system which implements  m u l t i t a s k i n g  i n  a more e f f i c i e n t  manner.'' 
I n  t h i s  case, t h e  e n t i r e  system is des igned  and b u i l t  as a s i n g l e  Ada p r o g r m  
with c e r t a i n  p rocedura l  a b s t r a c t i o n s  implemented a s  t a sks .  Each o f  these t a s k s  
r e p r e s e n t s  the work o f  o n e  l o g i c a l  p r o c e s s o r ,  and  may e v e n t u a l l y  r u n  on  a 
d e d i c a t e d  p h y s i c a l  p rocessor .  In t e r -p rocesso r  communication and s y n c h r o n i z a t i  J n  

can  then  be n a t u r a l l y  achieved  by us ing  rendezvous.  However, be fo re  t h e  progrdm 
is run  on the t a r g e t  mul t i -processor  environment ,  the  d i f f e r e n t  t a s k s  need til 

be " a s s i g n e d "  t o  the i r  c o r r e s p o n d i n g  p r o c e s s o r s .  And t h i s  is  n o t  e x p l i r  i t l y  

suppor t ed  by the language. The use  o f  PRAGMAS has  been sugges ted  here .  O n  t h ?  

o t h e r  hand, a d i s t r i b u t e d  system may be suppor ted  by Ada cs a c o l l e c t i o n  o f  Ada 

p r o g r a m s  c o m m u n i c a t i n g  t h r o u g h  i n t e r m e d i a r i e s .  One way would  be t o  pr3 'J  i d s  

l i b r a r y  packages t o  ina in ta in  "mailboxes" and whose "procedures" (which cou ld  711' 

i m p l e m e n t e d  a s  t a s k s )  c a n  be c a l l e d  from s e v e r a l  p r o g r a m s .  I n  any c 2 7 =  : 

s t a n d a r d  p r o t o c o l  i s  needed. 

An Ada s o l u t i o n  t o  these problems may be i n  t h e  form o f  a set of  inter-?r)j :1ln 
c o m m u n i c a t i o n  p r i m i t i v e s  prov ided  a t  t h e  APSE l e v e l  i n  t h e  pto3rarn l i ' J r 3 t : J .  

S a s i c a l l y ,  wha t  we a r e  t a l k i n g  a b o u t  here is  a g e n e r a l  f a c i l i t y  b),  w - I ~ L : ' :  

programs c3n communicate and s y n c h r o n i z e  t h e i r  a c t i v i t i e s .  These  f a r i l  i t i  ::. 

m u s t  be d e s i g n e d  i n  s u c h  a way t : , a t  t h e y  c o u l d  be  a q p l i e d  i n  a nllm22r .1f 

s i t u a t i o n s  us ing  d i f f e r e n t  programs. Thus, t h e  s p e c i f i c a t i o n  m u s t  be ! I ~ : F I - ~  1 

e n o q h  a s  t o  h i d e  t h e  i d e n t i f i c a t i o n  o f  t h e  orogrsms involved ,  and yet p r o v i , k  
wsys  t o  i d e n t i f y  a p a r t i c u l a r  s i t u a t i o n .  Ada ' s  gene r i c  u n i t s  g rqv ic l e  ! 1,' 

a n s w e r .  They  a r e  g e n e r a l  a t  the  d e f i n i t i o n  l e v e l ,  and  p a r t i c u l a r  ? t  : ' ; "  
ins tan t .  i a t  ion leve 1. 

U n f o r t u n a t e l y ,  t h e  u s e  o f  g e n e r i c s  here presents a number o f  inconve: l i l ' : lc . , , - .  
s ince the  ide r l t i t y  o f  the a c t u a l  programs us ing  t h e  t o o l s  is  not known t,:1., 

t ime o f  w r i t i n g  t h e  t o o l ,  these t o o l s  c a n n o t  be t a s k s  themselves. The Ad,] 

t a s k i n g  model dof ines an 3Syminet r iC i n t e r - t a s k  communication mechanism i n  whii:ij 

the i d e n t i t y  o f  tne c h l l ~ e  must he known t o  the  c a l l e r .  I n  o t h e r  words,  t o  hav-. 

t r u e  l i h r a r y  tasks (where the i d e n t i t y  o f  the c a l l e r s / c a l l e e s  is  n o t  reve.3lt?d), 

9.2.1.9 



we need  t o  in t roduce e x t r a  programs. For example,  if we wan t  t o  c o n n e c t  t w o  

l i b r a r y  programs and run them i n  p a r a l l e l ,  we have t o  d o  so t h r o u g h  a t h i r d  

i n t e r m e d i a r y  program. This is f e a s i b l e  because t h e  i d e n t i t y  o f  t h i s  t h i r d  

Program is  known t o  the o t h e r  two. The f a c t  t h a t  these u n i t s  run i n  o a r a l l e l  i s  

an  imp lemen ta t i on  dec is ion ,  which is b e s t  hidden i n s i d e  the uni t  body (an J d r f 4  

b e n e f i t ) ,  

a 

The f i r s t  a l t e r n a t i v e  seems more e f f e c t i v e ,  s ince  we c o u l d  use the  f u l l  power 

O f  the language a t  compi le  t i m e  (e.g., t ype  checking) and a t  run-tim? ( a t  l e a s t  

t h e  s y s t e m  c a n  b e  t e s t e d  on  a u n i p r o c e s s o r  e n v i r o n m e n t ) ,  and i t  does not. 

r e q u i r e  any t t s p e c i a l t t  f e a t u r e s  f rom t h e  p rog ramming  language  ( i n  f a c t ,  mos t 

a v a i l a b l e  i m p l e m e n t a t i o n s  w i l l  n o t  even s u p p o r t  m u l t i - g r b c e s s o r  t a r g e t s  

d i r e c t l y ) .  The second a l t e r n a t i v e ,  however, may be more convenient and e legant ,  

r e f l e c t i n g  the  r e a l  w o r l d  s i t u a t i o n  (Le., independent p a r a l l e l  progrsms each 

r u n n i n g  on  i t s  own CPU), b u t  r e q u i r e s  a w e l l - d e f i n e d  ’5TANDARD d i s t r i b u t e d  
systems methodology. 

5. coNcLusIws 
Accommodating he terogene i ty  i n  a s o f t c a r s  devalopment envirsnment r e q u i r i s  t : i a t  

0 
t he  system be w r i t t e n  for  a number o f  d i f f e r e n t  machines and be ab le  t o  support 

numeraus s o f t w a r e  packages a s s o c i a t e d  w i t h  v a r i o u s  o p e r a t i n g  end r u n - t i m e  

systems. I t  i s  pos tu la ted  t h a t  c o n t r o l  o f  such system must be e f f e c t e d  through 
d i s t r i b u t e d  k e r n e l s  o p e r a t i n g  on  a l o c a l  b a s i s .  The r u n - t i m e  sys tem i s  b e s t  

o rgan ized f o l l o w i n g  the layered model provided t h a t  we are  ab le  t o  h i g h l i g h t :  

- the  r e l a t i o n s h i p  betveen the d i s t r i b u t e d  and l o c a l  ope ra t i ng  systems 

- t h e  r e l a t i o n s h i p  be tween t h e  d i f f 3 r e n t  t y p e s  o f  d e c i s i o n s  made b y  thi’ 

j u x t a p o s i t i o n  o f  the  two c o n t r o l  domains (i.?., l o c a l  and g l o b a l )  
- t h e  v i s i b i l i t y  necessary t o  e f  -ec t  the var ious  imp lementa t ion  issues 

O b v i o u s l y ,  t h e  APSE approach is t h e  way t o  go, b u t  pe rhaps  i t  w i l l  need t o  i1e 
m o d i f i e d  t o  reso lve  d i s t r i b u t e d  computing issues such as: 

- network transparency a t  the u5er l e v e l  

- in te rp rog ram ( in te rnode)  communic3tion mechanism 

- except ion  hand l i ng  mechanisms encompassing d i s t r i b u t e d  c h a r a c t e r i s t i c s  

- ;~v(aren~!ss o f  a p p l i c a t i o n  o b j e c t i v e s  

9.?. 1.10 



- f a u l t  tolerance s t r a t e g y  Over t h e  p l a c e m e n t  and  u p d a t e s  o f  back-up  
c o p i e s  of i n fo rma t ion  

What we need here therefore is an e x t r a  l a y e r ,  t h e  DAPSE, i n  between the  MAP% 

and  KAPSE. Th is  w i l l  p r o v i d e  a s t a n d a r d  i n t e r f a c e  for  such a system s u p p o r t  
environment. 
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ABSTRACT 

The  groposed DoD standard Common APSE Interface Set ( C A I S )  has been developed as 

a framework set of interfaces that will support the transportability and interOperAbility 

of tools in the support environments of the future. While the current CAIS versiori is a 

promising start  toward fulfilling those goals and current prototypes provide adequate 

testbeds for investigations in support of completing specifications for a ful l  CAIS, t h e r r  

are many reasons why the proposed CAIS might fail to become a usable product a111(1 

the foundation of next-generation (1990's) project support environments s u c h  a3 K A S A  ' Y  

Space Station software support environment. The most critical threats to the v ia t i i l i 1  y 

and acceptance of the CAIS include performance issues (especially in piggybnck(Sc1 

implementations), transportability, and security requirements . To make the situaiiorl 

worse, the solution to some of these threats appears to be a t  conflict with the  s o l u t i o i ~ ~  

to others. 

TRW's CAIS development is a risk-managed approach planned to gather Infornlat 1011 

uarly about critical threats, and, based on that information, to identify and pursuc r i l i k -  

reduction development approaches. This is an application of Barry Boehm's "Spiral  

Model" of the software devrloprnent process, which integrates risk marragerrient i n t o  a 

generalization of systems developmen t processes. Risk-managed tipproaches typically 

include prototyping to expedite acquisition of infoririation ir. critical risk areas. TI1 \i"? 

i r i i t i i i l  aqwwrrierit of r i q k q  led to n c.oriiprchcrr.qive drsign phase for the prototype t,pforca 

1 ) . ? . 2 .  I 
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coding based on two principal reasons: 

0 1. the  necessity to avoid a "narrow" prototype tha t  accomplished wrne 
objectives while impeding others (or at lcast to reduce auch conflicts In the 
initial implementation and to reduce and asse8a costa In expanding the 
prototype to serve broad risk-reduction objectivee), and 

2. incomplete information about how to accompllsh tha t  In a prototype (or 
even what the threats really were and hence what the objectives should be). 

This prototype design phase was the Erst traversal of the Spiral Model. T h e  near-term 

benefit of this approach is to direct initial prototyping activities toward are- with 

highest payoff in risk-reduction information while retaining compatibility with 

pursuance of other areas. The ultimate payoff of the T R W  npproach will not be in 

rapidness of prototype simulation of the initial CAIS, but  in gathering information for 

specification and implementation of a viable 1990's CAIS (and perhaps even putting the 

C N S  prototype on the direct evolutionary path toward such a production-quality 

implementation). 

0 
Following are some of the risk-reduction directions determined by the TRW {',AIS 

prototype design activities: 

0 Performance: a key fact is that the CAIS is more complex than typical 
1980's oper&!;ng systems, offering direct tool and user support  in m a n y  are- 

not well (or directly) supported in most operating systems (e.g., 
configuration management support, inter-program communication and 
synchronization, access :ontrol, etc.). Early intense effort is needed in such  

key area9 to develop efficient algorithms and/or architectures in these n o t  

.rcrweII-supported arells. Simulation htw been identified aa a time-asving 
approach to rrrsess performacte of newly developed CAIS algorithms or 

architectures without the complete expense of tool building or porting (and 
qorrlr . t , irr ie.u wit!iout completely implementing the CAIS algorithms). 
~ ( j ( j i t i o r i a I Iy ,  t tw tough goal of piggybacked implementations (atop existing 

I). 2.2.2 
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operating systems) la crggru.vated by CAIS portability concerns 

0 TransportabIlIty of CAI3 ImplementatIonsi the TRW CAIS design is 

based on a mapping of CAIS functionality dlrectly to a machlne-Independent 
underlying model called the "tool portability layer". This means tha t  most 
of the CAIS functionality can be implemented without regard tu the 
undei-lying host. This approach isolates into the "inner portability layer" of 

the CAIS those functions that  are most host-dependent. This tlea in with 
the goal of efficiency by allowing development of hostdependent 
optlmizatlons in the inner layer, and hoseindependent higher-level 
optimizations in the outer tool portability layer. 

0 SecurItyt due to the time m d  expense of developing a certifiably secure 

CAIS (as on a bare machine), TRW's initial efforts will be investigations into 
using components from TRW's Army Secure Operating System (ASOS) 

project (scoped for A l )  89 a Trusted Computing Base upon which to 
implement the inner portability layer. This looks like a promising 
compromise between development costs of secure systems, and CAIS 
transportabiiity and performance goals (because of reuse of the tool 

portability implementation layer and its optimizations). 

As demonstrated in the list above, a risk-managed approach can find developrrieri . 

strategies which simriltaneously work toward solutions of the multiple critical threats to 

CAIS viability. A prototype implementation approach incorporating these is ongoing 

now, with il basic subset of the CAIS now implemented. Progress will be reviewed 

agains' the risk list later this year, a t  w6ich time risks may be re-assessed, new 

alternative approaches hypothesized, and new directions aelected based on information 

acquired in this phase of prototyping. This prototyping, risk re-assessment, a n d  

replanning will constiti1 tc another traversnl of the Spiral Model. 

I ) .  2 . 2 . 3  



Extending the Granularity of Representation 
and Control for the MIL-STD CAIS 1.0 Node Model 

Kathy L. Rogers 
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Introduction 

The Common APSE (Ada1 Program Support Environment) 
Interface Set (CAIS) [DoD85] node model provides an 
excellent baseline for interfaces in a single-host 
development environment (see Figure 1 )  . To encompass 
the entire spectrum of computing, however, the CAIS 
model should be extended in four areas. It should 
p r o v i d e  the interface between the engineerinq 
workstation and the host system throughout the entire 
lifecycle of the system. It should provide a basis for 
communication and integration functions needed by 
distributed host environments. It should provide common 
interfaces for communication mechanisms to and among 
target processors. It should provide facilities f o r  
integration, validation, and verification of test beds 
ex tending to distributed systems on geographically 
separate processors with heterogeneous instruction set 
architectures (ISAs). This paper proposes additions to 
the PROCESS NODE model to extend the CAIS into tnese 
four areas.2 

Rat ionale 

T h e  i n t e n t  of t h e  C A I S  i s  to promote' 
t r an s P O  I: tab i 1 i t y T he LI s t a r  

interf .:e should provide the same view of the S f S t c : ! l i  
for a remote workstation connected through a network d:j 

for a directly connected terminal. Accessibility d n c l  
finer granularity of the PROCESS NODE and QUEUZ f i l e  
information could provide procc2:;sor performance 
measures during the design phase of the project, 
debugging information during the coding phase, and 
assessments of hardware and sof twarr c-hanges during t‘ic 

a nd i n t e r ope r a b  i 1 i t y . 

Ada is a registered trademark of the U.S. Governmelit, 
Ada Joint Program Office ( R J P O ) .  

2 I t  is  the intent of this paper to discuss some O E  the 
topics which were explicitly deferred in MIL-STD CAIS 1 . 0 .  
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a Extending the Granularity of Repre8entatiOn 
and Control for the MIL-STD CAIS 1.0 Node Model 

maintenance phase. 

CAIS-provided code and data sharing could prov ide 
services (and entities) in a cost-effective manner to 
more than one application or user. To implement 
sharing, the node model must be able to manage data for 
dictionary driven processes, maintain version and 
revision information for library units, and provide 
security to maintain the integrity O E  the system. Data 
management requires information such as location, 
format, and access control of sharable resources. It 
might also extend to "knowledge" regarding the use of 
data, so that data may be relocated to facilitate 
convenient access. PROCESS NODES should be able to take 
advanta e of code (such as common packages) that can be 
shared. 3 

The PROCESS NUDE riiodel should accommodate the 
communications necessary in a distributed environment. 
Five types of communication interfaces should be added 
to the current model: communication between parts of a 
p r O C ~ S S  executing on separate processors, be tween 
processors (extending to processors with different 
ISAs) , between the CAIS and the PROCESS (in both the 
host and the target environment) , between different 
CAIS implementations, and among PROCESS NODES. In order 
to satisfy the Ada Language Reference Manual [LRM831 
requirement that "several physical processors (may: 
implement a single logical P K O C ~ S S O ~ ~ ' ~  effective 
information interchange is vital. InEormation must f.e 
communicated i n  an understandable format between 
heterogeneous ISAs. "Hooks" should be established so 
that individual elements of a test bed, as well a s  t*lt' 
integrated test bed, can be monitored. The CAIS s h o u l d  
b e  e x t e n d e d  to i n t e r a c t  w i t h  o t h e r  CAI.'; 

Multiple copies of packages, such a s  TEXT IO, w o u l i i  
b e  eliminated in favor of all processors at a s i t e  
accessing the same copy. In a heterogeneous distributed 
environment, this can extend to shared copies of SYS'rE1'1 
p a c k a g e s  and S T A N D A R D  packages, i f  a common d a t a  
representation scheme is used. 

-- 

Ada Language Reference Manual, Chapter 9, paragraph 
5 .  
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and Control for the HIL-STD CAIS 1.0 N o d e  Model 

implementations. 5 When processes executing under the 
auspices of two different CAIS implementations interact 
and require CAIS services, a standard method should be 
used to determine which CAIS should be called. 
Interfacing to communication mechanisms, especially in 
a geographically separate system, is an important 
aspect of the CAIS. 

Annotat ions for "non-funct ional"6 directives could 
be handled by the PROCESS NODE model. These directives 
include desired degree of fault-tolerance, scheduling 
priority, desired level of status information, recovery 
processes, performance measures, special hardware 
requirements, and/or amount (and detail) of information 
to be promoted. Fault tolerance could be supported to 
ensure that sufficient resources are utilized to 
maintain the level of integrity required by the 
process. Scheduling of processes a c z 9 ~ d i n g  to 
priorities should be considered: algori+!lms i 3 r  serving 
processes according to their prio, ities could be 
provided in a straightforward manner. Directives 
stating the granularity of information required f o r  a 
P R O C E S S  (which determines the amount of overhead 
incurred) should be flexible.7 Directives should also 
provide error recovery and rollback to the last "safe" 
state at a level of overhead which is appropriate f o r  
the PROCESS. Performance measures should be provided, 
especial.ly for "time critical" processes which may need 
to be routed to a processor based on the speed and 
level of services available. The need to know the 
execution efficiency of processes on target processors 
is a major reason che CAIS services should be available 
in the target environment. In some configurations, 

Oberndorf, Patricia, Prototyping C A I S  (Obern861. 

"Non-functional" is used here to denote constraints 
on functionality beycrld those which are explicitly written 
into the code. 

7 F o r  e x a m p l e ,  i n f o r m a t i o n  pertaining to the 
current/last instruction or procedure executing might be 
requested. In the same way, the status of entities 
ranging from register values to values of user variables 
might also be requested. 

D . 2 . 3 . 4  
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security will b- important; security directives should 
be provided and enforceable [LeGra86]. The CAIS can be 
continually extended by providing additional handlers 
to accommodate future "non-f unc t ioiial" directives. 

The PROCESS NODE model should include capabilities 
to query and to negotiate with other nodes. Negotiation 
may be required in the case of a remote procedure 
(subprogram) call where the size of the parameters 
exceeds the capabilities of the receiving processor. 
Query and negotiation procedures could detect this 
problem and establish a piecewise transmission of data. 
Processes executing on processors with different I S A s  
could negotiate a standard data format for transmitting 
data. Query capabilities are vital for processes which 
have very specific processor needs. Query and 
negotiation capabilities should b e  provided to 
determine the optimal processor configuration to 
execute a process. Library management, in a system 
containing heterogeneous ISAs and s p e c i a l i z e d  
processors, creates demand for information such as 
version/revision, intended ISA, special processing 
needs or priorities, and other required support.8 Check 
out, with locking mechanisms, must be maintained for 
library units. Security for the items being managed is 
also a concern. The level of access required to read or 
update information must be established, including 
altering access requirements after updates. Creation 
and maintenance of multiple copies must be addressed 
with respect to update9 procedures. 

Recommendations 

The current CAIS node model should be enhanced in 
four ways. First, the PROCESS NODE state information 
should be more descriptive. Second, there should be a 
PROCESS NODE representation 0: the status of each 

* Other support may include speed, space, and/or 
secu r i ty requ i r ements , e tc . 

9 Update is being used her e to encompass 
all modification functions, addition, modi'ication, 
deletion, e tc. 
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FIGURE 2 
Snapshot  of four PROCESS NODES 
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t h r e a d  of  c o n t r o l  e x t e n d i n g  t o  a n y  l e v e l  o f  
d e c o m p o s i t i o n ,  a n d  a QUEUE a s s o c i a t e d  w i t h  e a c h  
PROCESS NODE. T h i r d ,  t h e  QUEUE NODE10 s h o u l d  be  a b l e  t o  
provide  accessible s t a t u s  measures b e y o n d  t h o s e  w h i c h  
a r e  " h a r d  coded" i n t o  t h e  process. F i n a l l y ,  t h e  QUEUE 
NODE model s h o u l d  p r o v i d e  c a p a b i l i t i e s  t o  a c t  o n  t h e  
i n f o r m a t i o n  received. 

A s  a n  e x a m p l e  o f  t h e  i m p l i c a t i o n s  o f  t h e  a b o v e  
r e c o m m e n d a t i o n s ,  c o n s i d e r  a PROCESS t h a t  s p a w n s  t h r e e  
s u b o r d i n a t e  t a s k s :  a p r o d u c e r ,  a b u f f e r ,  a n d  a 
c o n s u m e r .  F i g u r e  2 is a s n a p s h o t  of t h e  f o u r  P R O C E S S  
NODES; i t  r e p r e s e n t s  t h e  s t a t e  of e a c h  t h r e a d  o f  
c o n t r o l  c u r r e n t l y  e x e c u t i n g  o n  b e h a l f  of t h e  " m a i n "  
process. T h e  o v e r a l l  job, a s  w e l l  a s  e a c h  s u b o r d i n a t e  
t ask  i s  dep ic t ed  a s  a PROCESS NODE, w i t h  a n  a s s o c i a t e d  
QUEUE NODE. E a c h  PROCESS NODE h a s  s e v e r a l  p r e d e f i n e d  
a t t r i b u t e s  i n c l u d i n g :  CURRENT STATUS, PARAMETERS, a n d  
RESULTS. O t h e r  i n f o r m a t i o n ,  s u c h  a s  t h e  l o g i c a l  name of  
t h e  s i t e  w h e r e  t h e  process is e x e c u t i n g ,  may a l s o  b e  
a v a i l a b l e .  E a c h  QUEUE NODE r e p r e s e n t i n g  o n e  o f  t h e  
s u b o r d i n a t e  t a s k s  h a s  a r e l a t i o n s h i p  t o  t h e  QUEUE NODE 
a s s o c i a t e d  w i t h  t h e  PROCESS NODE for  t h e  o v e r a l l  job. 
Note t h a t  when t h e  s u b o r d i n a t e  t a s k s  t e r m i n a t e ,  t h e i r  
r e s p e c t i v e  PROCESS a n d  QUEUE NODES cease t o  e x i s t .  

I n  o r d e r  to  a u g m e n t  t h e  PROCESS NODE, t h e  p r o c e s s  
s t a t e s  s h o u l d  c o n s i s t  of " m e t a - s t a t e s "  a s  w e l l  a s  
" m i c r o - s t a t e s " .  I n  a d d i t i o n  t o  t h e  c u r r e n t  " m e t a -  
s t a t e s "  R E A D Y ,  SUSPENDED,  ABORTED, a n d  TERMINATED,  a 
n e w  m e t a - s t a t e ,  R U N N I N G ,  s h o u l d  b e  a d d e d .  T h e  
m e t a - s t a t e s  s h o u l d  a l s o  h a v e  m i c r o - s t a t e s  to  p r o v i d e  
a d d i t i o n a l  i n f o r m a t i o n .  T h e  R E A D Y  m e t a - s t a t e  s h o u l d  
i n c l u d e  t h e  m i c r o - s t a t e s  W A I T I N G  ( f o r  r e s o u r c e s ) ,  
COMPLETE ( b u t  n o t  t e r m i n a t e d ) ,  a n d  B L O C K E D  ( a w a i t i n g  
r e n d e z v o u s )  . T h e  TERMINATED m e t a - s t a t e  s h o u l d  i n c l u d e  
t h e  m i c r o - s t a t e s  NORMAL a n d  ABNORMAL.  

T o  i n c r e a s e  t h e  g r a n u l a r i t y  of t h e  PROCESS mode l ,  
t h e  PROCESS NODE,  w h i c h  r e p r e s e n t s  t h e  o v e r a l l  job 
s h o u l d  a l s o  p r o v i d e  PROCESS NODES f o r  e a c h  " t h r e a d  of 
c o n t r o l " .  T h a t  is, a PROCESS NODE s h o u l d  be a s s o c i a t e d  
w i t h  ? v e r y  b o d y  of a s u b p r o g r a m ,  t a s k ,  o r  p a c k a g e  i n  a 
s t a t e  o f  e x e c u t i o n .  A l l  PROCESS NODES s h o u l d  be  of t h e  

10 T h e  term QUEUE NODE i s  u s e d  ( r a t h e r  t h a n  QUEUE F I L E )  
i n  o r d e r  to desc r ibe  t h e  QUEUE a s  a n  e n t i t y .  
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same form (complete with proposed extensions) .I1 The 
P R O C E S S  NODE for each thread of control should have an 
associated Q U E U E  N O D E .  Information from QUEUE NODES 
should be promotable upward to the Q U E U E  N O D E  
representing the next higher level of decomposition, 
based on the amount of information required by the 
higher level PROCESS/QUEUE pair. In this way, the 
current C A I S  P R O C E S S  NODE i s  maintained on the jr!b 
level, but is also decomposable to provide more 
specific information when needed. 

Status information provided to the QUEUE12 should 
be usable by other processes. In the current model, 
data, procedures, o r  tasks in one process cannot be 
directly referenced from another process.13 QUEUE files 
a r e  c u r r e n t l y  used a s  h o l d e r s  o f  P R O C E S S  
information.14 The level of detail for status messages 
and the amount of overhead incurred, should be able to 
be specified. Other specifiable information includes 
the amount of information that should be promoted from 
a QUEUE NODE at any level to a QUEUE NODE related to a 
PROCESS at a higher level. Extensibility of the QUEUE 
N O D E  model can be provided by viewing the node as a 
database which can be queried by applications (or 
engineers). Additional information could be added to 
the database in the future, which could be utilized by 
processes which are aware of the enhancements. Status 
information generated independent of the process (or 
processor) is necessary in a distributed system, in the 
event of process (or processor) failure. 

T h e  Q U E U E  s h o u l d  be more than a passive 
information receptacle. It should be capable of being 
u s e d  to initiate procedures, such as recovery upon 

0 

l1 The PROCESS NODES should extend to any 
level of decomposition necessary. 

l2 C A I S  Rationale and Criteria document. 

l 3  MIL-STD C A I S  1.0 p. 14. 

l 4  Three types of QUEUE files are defined. The QUEUE 
f i l e s  can opera t e  in SOLO (write append, destructive read), 
COPY (SOLO Q U E U E  with initial contents), and M I M I C  
(dependent upon another QUEUE file) modes. 
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used to initiate procedures, such as recovery upon 
detection of a fault in the system. Facilities such as 
those necessary to terminate processes which are not 
performing correctly could also be provided. Early 
warning regarding process failure (rather than fault 
detection upon request for service) provides the 
calling process with a potentially greater number O f  
recovery possibilities. Action in the event of failing 
processes is essential in environments which require 
fault tolerance, especially in unattended systems or in 
those systems where life and property depend on 
continuous, correct functioning of hardware and 
software. 

Conclusion 

The potentially long lifetime and large number of 
host development environments and target processor 
configurations, using Ada, require a CAIS that promotes 
transportability, interoperability, communication, and 
extensibility. The CAIS should provide a constant view 
(at an appropriate level of detail) of the supporting 
hardware and the APSE tools. This view should be 
provided to an engineer at a workstation, as well as to 
a secure, fault-tolerant distributed process. The CAIS 
should be extended to provide query and negotiation 
capabilities among nodes. It should include mechanisms 
for handling "non-functional" directives (in order to 
address the spectrum of processing complexity). I t  
should also accommodate sharing code and data, as well 
as communication interfaces. These enhancements are 
necessary to accommodate the potential changes that 
w i l l  occur throughout the l i f e c y c l e  of A d s  
applications. Some extensions to the CAIS model ~ L C  

necessary. Recommendations include maintaininy more 
descriptive PROCESS state information; viewing the 
current PROCESS NODE model as a description at the 
overall job level (and providing PROCESS nodes for 
subprograms, tasks, and packages, while they possess d 

thread of control); viewing the Q'JEUE as a resource 
NODE rather than a logging file, and enhancing the 
Q U E U E  NODE to make it responsive to processinq 
requirements. The proposed extensions to the C A I S  model 
maintain the job level view of the original CAIS design 
and enhance it by providing decomposition to a finer 
level of granularity. 
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1. Overview 

Experience with the CAIS 

Michael F. Tighe 
In te r me t r ics, I 11c . 
Cambridge, Mass. 

Intermetrics is currently using an earlier version of the CAB (based on CAIS 1.2) i n  
the implementation of it's line of Byron'/Ada* APSE products. This proto-C' AIS 
provides all the Byron tools, Ada compiler, linker-driver, Ada program library 
manager, etcetera with a standard interface to the underlying operating system. 
Written in Ada and using Ada language features to separate specification from irnple- 
mentation, this proto-CAIS is curreutly implemented on four different operating s.5- 

terns, representing two different machine architectures including 

VAX/VMS (Digital Equipment Corporation) 

MVS/370 (IBM) 

CMS/370 (IBM) 

U'L'S 3.5 (Amdahl U K U 3  derivative running under VM on the 370). 

In progress is the task of moving the proto-CAIS (thus the Byron APSE,) to t h < *  
Sperry 1100 series (a  third hardware class and fiftii operating system). 

In terrnetrics is using th i s  technology to permit the primary developr~lent teani I O  

proceed doing main-line development work on the Byron U S E ,  while r e h o s t  tc; lr i~- 

t,ake either source or object niodules (depending o n  the target harrlware) allti i i i s t : i I I  
the most recent version of the Byron APSE on these new machines for testing nrlci 

2 .  
1 .  

3 .  

Ada is a registered trademark of the U.S. Government Ada .Joint Prograin Otticr. 
13yron is a registered tratleriiark 01 Interrnetricr, Inc. 

' JNIX is a trademark of [Jcll Laboratories. 
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demonstration to customers. This process allows the various rehost teams to  follow 
the primary development team very closely, at times being only two or three weeks 
behind the primary team in terms of supported capability. Each rdiost team 
con thues  work on developing contract- or host-specific fcaturcs for the ret iostd 
c o rt l  pi le r . 

2. Proto-CAIS Usage in the Uyron/Ada Compiler 

T h e  proto-CAIS is the primary database used by the functions that irriplcrlielit I 
Ada Program Library functions of the Byron APSE. The Program Library wrilairis 

various representations of the Ada program as the compiler translates it from text, 10 
object code. The retcritiori of theso representatioris i n  thr Prograrri Library is i i i i d ( a r  

user control but usually include 

an abs trac t  syntaz t r e e  (AST), 

a Diana representation of the program, 

an internal form used for code generation (called Bill), 

and the linkable object module. 

Each form of the program representation is kept for each smallest compilable u n i t  of  
the language, as the programmer can present his source to the Ada compiler in a n y  of 
a variety of sequences and portions. It is necessary to organize these representatioiis 
in an orderly fashion w h i c h  is related to the name of the entity that they represtlit. 
Additionally, there are inter-rclatioiiships between the represvntations. For i~istaiicv. 
each  specific object module is derived from a c o r r c ~ s p o l ~ d i n g  spec-itir U i l l  
representation which  is derived from a corresponding specitic Diana representation 
ivhich in turn depends on i t s  specific abstract syntax tree represenlation. Conipilatiuii 
dependencies of the w i t h  statements in the source are reprost~rited a s  Clept~i i~ l t~ i ic* ic~~ 

between the Corresponding Diana representations. Date/tirne of compile arid ot hc.r 
iriforrriation is kep t  as well. 

0 
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Each uuit is composed of a spec and a body, with the possible inclusion of a subunll .  
Each spec or body is composed of the underlying representations (/om) of the source 
(AST, Diana, Bill, Objmod). 

One specific implementation detail is that all file objects (the CAIS f i l e  node), whi(:h 
represent the Diana or AST or Objmod, descend from the collection. The spec a n d  
body forms of the unit have secondary (rather than primary) links to the file nodes. 

This grouping of compilation information into catalogs with all the variolis 
representations and attributes for each compilation unit represents the set of data  
managed by the proto-CAIS. This information is stored by the proto-CAIS in 
underlying host files. Each representation (AST, Diana, Bill, Objmod) of a 
compilation unit is kept as a separate file on the host. Relationships and attributes 
are stored in a sinble database represented by three files. The accompanying 
diagrams are intended to  be suggestive of the use that the program library makes of 
the proto-CAIS rather than an exhaustively complete example. 



Figure 2 - Catalog Internals 

Intermetrics has recently had experience in replacing the p ro to -CdS  with a totally 
re-written implementation to improve performance of the too! set  using the proto- 
CAIS. Preliminary performance analysis indicated that the initial implementation of 
the proto-CAIS w a s  a drain on the performance of the system, and it was targeted 
for a rriajor upgrade in Performance. The entire rinderlying irnpleriientation of t t i ( %  

proto-CAIS w a s  redesigned and reimplemented in light of the pcrforniance data,  and 
the new implementation is currently installed in the latest version *>f the .-Ida 
c*ompiler and its tools. 

At present the new implementation is perforrriirig up to expectations with 110 

silomalies reported due to differences in irnplerrierit;itiori. It is important to note tli;it 
o n l y  rrlinor changes (less than 500 lines of Ada code, excluding the new proto-(';\ls 
code) were made in the corripiler and tool sources (40OKSLOC) to allow this r i e i s  
iiriple~rien~atiori to be installed. by 
c tiangt!d functionality o f  the ricw irriplenientation of the proto-CIl1S whic-ti i v ~ ~ r c ~  
intended to improve performance without loss of portability. Sonie sniall number of 
rharigc:s were niadc to clear up anomalies i n  the prelirtiirinry irnplernentation and 
cl(-firlition of t t i v  proto-C:A IS. llad I I O  changcs ir i  functionality been required, there 

Most of tliese source changes were required 
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would have been no source changes required in the sources of the tool set. 
i 

4. Conclusion 

Intermetrics experience is that  the Ada package construct, which  a l lows  separation of 
specification and implementation allows specification of a CAIS that i s  transpori,ahle 
across varying hardware and software bases. Additionally, the CAIS is an excellent 
basis for providing operating system functionality to Ada applications. By allowirig 
the Byron APSE to be moved easily from system to system, and allowing sigriifirarit 
re-writes of underlying code, Ada and the CAIS provide portability as well as 
transparency to change a t  the application/operating system in  terrace level. 
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and 

Richard ' h a l l  
SofTech, Waltham, Massachusetts 

Ihe -on APSE Interface Set (CAIS) is a proposed MIL-STD intended to 
pranote the por tab i l i ty  of Ada Rogramning Support Environment (APSE) 
tools written i n  Ada. 'Ihe standardized interfaces define a v i r tua l  
operating system, fran which portable tools derive the i r  basic services,  
e .g . , f i l e  management, input/output, cmun ica t ions ,  and process control . 
In the Ma world, such a v i r tua l  operating system is called a Kernel Ada 
Frogrammitig Support lvironment (KAPSE). ?he CAIS is a standardized 
interface between KAPSEs and tools. Ihe CAIS has been proposed a s  a 
s t a r t i ng  point for standard interfaces to be used i n  the NASA Software 
S u p p r t  hvironment (%E) for the Space Station Program. l h i s  paper 
describes the s ta tus  of the CAIS standardization e f fo r t  and p lans  for 
further developnent. 

BACKGROUND 

The proposed standard E13 was prepared, largely,  by a volunteer group 
composed of members of t h e  KAPSE Interface Team (KIT) and KAPSE Interface 
Team from I n d u s t r y  and Academia (KITIA). ?he KIT/KITIA is composed of 60 
representatives from U.S. government, i n d u s t r y ,  and univers i t ies ,  as  well 
as  foreign governments and inst i tut ions.  Che seat  on the KIT has recently 
been created for a NASA representative. A small core group of dedicated 
KIT/KITIA volunteers was responsible for producing the proposed CAIS 1 
standard i s sued  i n  January 1985. Public r e v i e w  of CAIS 1 is now b e i n g  
completed a s  part of the normal mili tary standardization process. Ulless 
insurmountable objections are recorded, CAIS 1 w i l l  become a MIL-STD. A 
number of prototype implementations of CAIS 1 have been or are being 
constructed for experimentation and validation of t h e  'design. No 
signif icant  test of the design w i t h  tools t h a t  use the interfaces has yet 
been under taken. 
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Design of a canyrehensive interface set is a la rge ,  canplex problem. 
Since the resources of the or iginal  volunteer group were severely 
constrained, CAIS 1 effort was focused on the problem of  d e f i n i n g  the 
major s t ruc tura l  elements of t h e  v i r tua l  interfaces ,  i.e., the data 
structuring model, the process control model, and input/output. Many 
subjects could not be addressed i n  the requis i te  time. mese include 
configuration management issues, device control ,  resource management, 
issues related to dis t r ibut ion,  interfaces between Ada tools ,  data 
exchange between Emironments, data typing i n  t h e  f i l e  s t ruc ture ,  and 
graphically oriented input/output . 
In l a t e  1985, a contract  was awarded to SofTech, Inc. of Waltham, 
Massachusetts for t h e  continued developnent of the CAIS. Tne enhanced 
CAIS is called CAIS 2. COmpusec, Inc. of San Diego, California is a 
consultant to SofTech for issues relat ing to multilevel-secure operating 
Systems and access control. ?he Naval bean  Systems Center (NOSC) i n  San 
Diego, California,  is t h e  contracting organization acting i n  behalf of the 
Ada Joint  Program Office. NOSC provides the technical lead for a l l  
KIT/KITIA and CAIS-related programs. 

CAIS 2 DEVELOPHEKT 

The primary goals of the CAIS 2 project are to produce a standard tha t :  

-- 

o meets practical  requirements, 

o is technically superior, 

o is developed w i t h  responsive public review, and 

o h a s  adequate supporting material. 

The major products of t h i s  project are a draf t  CAIS 2 Standard and 3 f ina l  
C A I S  2 Standard. 'Ihese are c u r r e n t l y  slated for publication i n  ear ly  1987 
and 1988, respectively. Experience has shown tha t  it is exceedingly 
d i f f i c u l t  to understand a software interface standard i n  the absence of 
considerable supporting docmentation as  well as  an operating model. For 
t h i s  reason, CAIS 2 w i l l  be accompanied by a Rationale, a Guide for CAIS 
Implementors', a Formal Semantic Description of CAIS 2,  and a prototype. 
Rationale docunents w i l l  be published w i t h  the d ra f t  and f ina l  CAIS 2. 
Other supporting items w i l l  becune available i n  the year following the 
publication of the f inal  CAIS 2 Standard. 

Public review meetings are planned a f t e r  the publication of the d ra f t  and 
f i n a l  CAIS 2 Standards a s  one method for obtaining constructive cr i t ic ism 
from a wide audience. A more formal comnent mechanism w i l l  a l so  be 
available d u r i n g  these periods. A t  other times, the KIT/KITIA ac t s  a s  the 
sounding board for design issues. As a guide for CAIS 2 design, the 
KIT/KITIA has published requirements for CAIS 2 [ 21. l'hese requirements 
a re  also subject to public review and c m e n t .  
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CAIS - 2 - 
A few of the  major CAIS 2 requirements are paraphrased below w i t h  
c m e n t a r y  relating to NASA issues. 

Ckneral Requirements 

lhe CAIS services are intended to be sufficient to support tools used for 
software developnent. mere are no requirements for real-time services as  
might be required by many NASA applications. Except for m e  aspects of 
comnunications, software developnent has no time-critical component. 
Support for testing of applications which have time-critical features is 
not addressed by t h e  requirements. 

h e  CAIS shall  be independent of any specific operating system or 
canputer. However, a reasonable level of modernity is assuned. 

When implemented wi th  sufficiently sophisticated hardware and software, 
t h e  CAIS shall  be capable of supporting multilevel secure operations. In 
other words, CAIS access control mechanisms must  be sufficiently robust to  
provide for the partitioning of data, users, and d.?vices which are  
comningled i n  a c m o n  system, bu t  operating w i t h  differing levels of 
security clearance. Some data and devices w i l l  be shared, others m u s t  not 
be. ?his requirement is c r i t i c a l  for Space Station operations where 
classified m i l i t a r y  and proprietary industrial applications m u s t  a l l  share 
a conmnon fac i l i ty .  

h e  CAIS shall  incorporate existing standards to the greatest extent 
possible. 

?he CAIS shall  be designed to allow tools to operate i n  distributed 
environments. The least  constrained model of distribution is a network of  
computers, each having independent memory and f i l e  storage. ?he database 
can be shared among the nodes of the network. Ccmputers i n  the network 
may be of the differing tyws. ?his model should be sufficient to support 
the SSE. 

Pie requirements mandate support for d sophisticated f i l e  system, v . . r ' ,  
close to what is u s u a l l y  c a l l e d  a d a t a b a s e  ma-rgernent system (DUMS). 111:. 
DBMS is to support a very general structuring capability, e.g.  \ j r !  

entity-relationship model. 

No specific configuration management capability is required; a l though  i t  
is tac i t ly  assmed t h a t  the structuring capability be general enough t '  
support almost any configuration management method. 
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A database typing mechanism is required to control the name space of t h e  
data objec ts ,  the a t t r i bu te s  possessed by data objects ,  and t h e  nature of 
re la t ionships  that can be created among objects. 

b b u s t  access control is required. In addition to t h e  conventional 
discret ionary access control,  mandatory access control for multi-level 
c lass i f ied  material  is required. 

CAIS 2 is required to supply a mechanism by which cer ta in  database 
operations t r igger  the execution of user-defined procedures. 

CAIS 2 w i l l  supply a means for grouping database operations i n t o  
transactions. When transactions are  used,  the database is permanently 
modified o n l y  when an entire transaction succeeds. Failing transactions 
result i n  no change to the database. It is also a requirement tha t  t h e  
e f fec t  of running transactions concurrently shal l  be the same as  r u n n i n g  
them i n  sane s e r i a l  order. 

CAIS 2 is required ta supp ly  a mechanism for collecting and storing 
information about how database objects were generated. For exanple, the 
h i s t o r y  of an object module would include the names and revision nunbers 
of a l l  source f i l e s  used i n  the canpilation, the name and revision nunber 
of the compiler used, and the parameters given to the compiler. 

A standard data interchange format is required. 

Frogran Ejtecution Requirements 

Cne executing program can s t a r t ,  s top,  suspend, and resume other processes 
to which it has access. 

Tne CAIS w i l l  s u p p l y  a means for interprocess synchronization and 
c m u n  ica t ion . 
?he CAIS w i l l  supp ly  a means whereby one process can monitor the execution 
of another process. This is useful for debuggers and other dynamic 
analysis tools. 

CAIS 2 PLANS --- 
?he design of CAIS 2 has progressed to the point where some general 
statements can be made about CAIS 2 and i ts  relationship w i t h  CAIS 1 .  We 
expect CAIS 2 ta address a l l  issues expl ic i tyly deferred by the CAIS 1 
team. We expect simplifications i n  sane areas. bwever, since the scope 
of CAIS 2 is s ignif icant ly  larger than CAIS 1 ,  the overall complexity 
level may be similar .  The issue of inter-tool interfaces w i l l  be 
addressed by proposed standard representations for t e x t u a l  and graphical 
data .  CAIS 2 designers do not believe t h a t  standardization of inter-tool 
interfaces more specific than these are w i t h i n  the purview of the e f f o r t .  
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C A I S  2 W i l l  not alter the basic structure of the C A B  1 database model. 
We expect, however, to conceptually simplify the  discretionary access 
control mechanism. A typing mechanisn w i l l  be superimposed upon t h e  
present entity-relationship model. mis mechanism w i l l  allow new types of 
objects to be created by reference to existing types .  There w i l l  be one 
base type for a l l  objects, so that  tools which operate on a l l  database 
objects W i l l  not be affected by t h e  creation of new types of objects. As 
a m i n i m u n ,  the  typing mechanism will manage the name space of database 
objects a s  well as the allowed at t r ibutes  and relationships. It is not 
clear if the typing mechanism w i l l  de31 wi th  t h e  representation of 
database objects. A few additions to CAIS 1 database services are 
expected for support of distributed databases. 

CAIS 2 w i l l  maintain the present process model, i .e. tree structured 
process creation wi th  a few embellishments. It is l ikely that some 
changes w i l l  be needed i n  the  area of interprocess comnunication and 
control i n  order to support distributed environments. 

?he entire input/output model of CAIS 1 w i l l  be streamlined. Tne present 
model has b u i l t - i n  services for specific classes of devices, e . & .  
scrolling terminals, page terminals, and form terminals. Hot only does 
t h i s  approach proliferate the nunber of interfaces, b u t  it f a i l s  to  
pranote the notion of device independence. For example, given a tool 
written for a page terminal, it could be d i f f icu l t  to  redirect output from 
that tool to a scrolling terminal. While it may not be possible to 
achieve satisfactory operation of a screen editor from a W e 1  33 
Teletype, we do not want the interfaces to encourage the construction of 
device-dependent tools. To accmodate differing devices, we intend to 
propose t h e  notion of a logical device driver (LDD),  An LDD is a program 
fragment that converts information i n  a standard representation to and 
fran a stream of c m a n d s  for a known device, producing the best rendering 
possible, given the device constraints. Lhder t h i s  proposal, CAIS 2 w i l l  
have specific interfaces for L D B ,  i n  addition to the normal tool 
interfaces. If the LDD interfaces can be defined wi th  the correct blend 
of f l e x i b i l i t y  and specificity,  it should be possible to write L D b  i n  Ada 
and transport them from one CAIS implementation to another. I n  other 
words, tools would be largely device independent b u t  wsuld depend upon a 
specific collection of device drivers. Tools m u l d  be ported w i t h  their 
associated LDCs, if the LDDs are not already present on the new host.  t k w  
devices w u l d  require new LDDs to be created; however, a new LDD should 
allow most existing tools to be used w i t h  the new device, unless the tool 
3r the device has some unusual characterist ic.  lhe LDD concept would 
allow CAIS 2 implementations to ut i l ize  new devices without circmventing 
the Standard, or necessitating a change to the Standard, 
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Like C A B  1, C A I S  2 w i l l  supply a bridge to VO faci l i t ies  defined by 
QlaPter 14 of the Ads language standard. Bese f a c i l i t i e s  a r e  sufficient 
for a l a rge  nmber  of tools, many of which w i l l  exist pr ior  to or outside 
of 2 implementations. lhis bridge will allow such tools to be 
imported i n t o  C A I S  2 environments with minimal source code a l t e r a t ion .  

0 

We have proposed that CAIS 2 define a few standard data  representat ions 
sufficient for a l a rge  proportion of tools. Che representation w u l d  be 
used for sophis t icated t e x t .  It wu ld  encompass the  conventional ASCII 

character  stream, but  augnlent it to support multi-font, multi-format, 
multi-color rea l iza t ions .  ?his representation muld be b i p a r t i t e  , 
separating the text strean frm the descr ipt ion o f  how the strean is to be 
displayed. We have a l so  proposed a standard representation for  graphical 
images. This representation would subsune the sophisticated text 
representat ion.  Final ly ,  we have proposed a standard language for  
descr ibing how physical f i l e  layout corresponds to the Ada f i l e  
spec i f ica t ion .  This muld allow f i l e s  to be converted so that data  can be 
moved across  the  boundaries between canputers, operating systems, KAPSEs, 
and compiling systems. A standard interchange representation will 
c m p l e t e  the  capabi l i ty  for moving data  between CAIS implementations. 
' k i S  capab i l i t y  is key to the success o f  heterogeneous d is t r ibu ted  systems 
such a s  SSE. 

CAIS 2 designers hope to be able to apply the concepts o f  standard 
representat ions and L D B  to other areas  of  the CAIS in order to build sane 
re s i l i ence  i n t o  the Standard. A standard a s  comprehensive a s  CAIS cannot 
s u r v i v e  unless it can be rapidly adapted to changing hardware technology 
a s  well a s  t h e  demands of  sophisticated appl icat ions such a s  t h e  $ace 
Stat ion.  0 
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TRANSPORTABILITY, DISTRIBUTABILITY, AND REHOSTING EXPERIENCE WITH A 

KERNEL OPERATING SYSTEM INTERFACE SET 

F. C. Blumberg, A. Reedy, and E. Yodis 
Planning Research Corporation 
1500 Planning Research Drive 

McLean, Virginia 22102 

For the past two years, PRC has been transporting and installing a software 
engineering environment framework, the Automated Product Control Environment 
(APCE), at a number of PRC and government sites on a variety of different hardware. 
The APCE was designed using a layered architecture which is based on a 
standardized set of interfaces to host system services. This interface set, called the 
APCE Interface Set (AIS), was designed to support many of the same goals as the 
Common Adar"' Programming Support Environment (APSE) Interface Set (CAIS): 
transportability of programs; interoperability of data; and distributability of the 
environment processes and data. However, the evolution of the AIS has been quite 
different than that of the CAE. The AIS was designed to support a specific set of 
lifecycle functions and to provide maximum performance on a wide variety of operating 
systems. 

The APCE was developed to provide support for the full software lifecycle. Specific 
requirements of the APCE design included: automation of labor intensive 
administrative and logistical tasks; freedom for project team members to use existing 
tools; maximum transportability for APCE programs, interoperability of APCE database 
data, and distributability of both processes and data; and maximum performance on a 
wide variety of operating systems. The functions supported by the APCE include: 
configuration management for lifecycle products; traceability; change and release 
control; project control and reporting; management for all levels of testing including 
integration and system testing; and support for standards enforcement. The AIS 
design is critical in supplying transportability, interoperability, and distributability. The 
AIS design is also critical in providing the basis for APCE performance. 

This paper gives a brief description of the APCE and AIS, a comparison of the AIS and 
CAlS both in terms of functionality and of philosophy and approach, and a 
presentation of PRC's experience in rehosting the AIS and transporting APCE 
programs and project data. Conclusions are drawn from this experience with respect 
to both the CAlS efforts and the Space Station plans. 

1Adam is a registered trademark of the U.S. Government Ada Joint Program Office. 
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The A W E  has been designed based on a separation of concerns between the 
functionality of the environment framework or architecture and the functionality 
Of took. The environment provides control, coordination, and enforcement of 
standards and policy and acts as repository for information (including software 
lifeCYCle products). The tools assist the project members in the actual creation 
O r  modification of the products (software and associated documentation and 
lifecycle products). 

The APCE supports a software lifecycle process paradigm. The software 
lifecycle is viewed as a series of development or maintenance projects. Project 
members fall into three board categories: managers, developers, and testers. 
Developers include all project members who create or modify lifecycle products: 
requirements analysts, designers, coders, etc. Testers include the traditional 
categories of configuration management and quality assurance personnel and 
personnel involved in product reviews and audits. Projects have phases which 
can be defined in terms of the products developed during each phase. The 
APCE requires a testing process for the products of each phase. The paradigm 
is illustrated in Figure 1 which uses Mil-STO-2167 phases and products as an 
example. The APCE is configurable for different phases and products as well 
as for different methods of integrating products (software or documents) from 
components. 

The functions provided by the APCE framework include: 

0 

0 

0 

0 

0 

0 

0 

0 

configuration management of software, documentation, and test 
procedures; 

automated status reporting and tracking of product components, 
work packages, and changes; 

maintenance o! traceability from requirements through development 
to code; 

automated test bed generation and support for testing from unit 
testing through system testing: 

maintenance of project database; 

automated integration and release control for products: 

enforcement of selected standards and procedures through testing; 

project specific environment configuration. 

The user interface consists of a set of menus for the major subsystems. The 
functions provided by the five major subsystems are summarized below. 
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Generation S m  : The generation subsystem allows selected privileged 
users to configure the APCE to the specific project in terms of user groups and 
organization, work packages and schedule, project phases, products, and 
product integration structure. The APCE can be reconfigursd to reflect changes 
to the project structure and organization as needed. The generation subsystem 
uses this information to organize the project database. 

e 

DeveloDment S u m  : The development u x y s t e m  allows developors to 
Select the data or products associated with their tas4 a1.d 'c ,  xti.irn their finished 
products back into the database when thrv 0-r  . wiy 'x testing. The 
developers can use the software tools a*..' ( l ~ k  : w i r  host system or 
workstation to work on the products. The curre ..! ~ 6 7 5  . ;I!? ArCE does not 
direct!y control the use of these tools. 

Test Su- : The test subsystem suoports the tastsrs in the bbilding, 
execution, and reporting of the product tests. The test scbsystem allows the 
testers to create test procedures, which are then managed by the APCE. The 
APCE will build test beds and integrate product components for the testers, who 
will then execute tests. The testing process provides the methods for 
enforcement of standards and policies. The testers report the test results 
through the test subsystem. Testers are also responsible for system release in 
the APCE paradigm and the test subsystem performs this function. 

Chanae Co ntrol Subsvsteq : The change control subsvstem allows managers 
to enter change requests into the system and to define stop dates for release 0 support. 

Peoort S u m :  The report subsystem allows managers and other APCE 
users to get reports on the current status of changes, test procedures, and 
releases. I t  also gives reports on project status by task or by product 
component. Additional reports provides impact analysis for proposed changes 
and other traceability information. 

ENVIRONMENT GOALS 

The goals of the APCE design are: 

o to provide management and control for the full software lifecycle 
process; 

o to automate the labor intensive administrative and logistical 
overhead functions: 

o to allow full use of existing hardware, operating systems, file 
management/DBMS, and communication resources. 

The last goal implies a series of subgoals. An environment should be 
distributable across heterogeneous operating system configurations, 
heterogeneous file rnanagement/DBMS facilities and use the available 
communications facilities as well as heterogeneous hardware configurations. 
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The control framework must be easily transportable to new hardware and host 
systems at reasonable cost. The environment database, including the lifecycle 
products and their relationships and attributes, must be easily moved between 
environment instances. There must be no performance penalties for usjag the 
environment. It must cooperate at some level with existing operating systems to 
take advantage of their security and performance features. Finally, the 
environment must allow the use of exist!ng software tools and allow flexibility for 
retooling as necessary. 

ROLE OF THE A P E  INTERFACF SFT 

The basic architecture of the APCE is best described as "Stoneman inspired but 
data coupled". The system is layered as illustrated by Figure 2. The host 
system (s) provide basic services such as operating system services, file 
management system/access mechanism or database management system, 
access controls, and cornmnications mechanisms as needed for the 
configuration. The communications facilities are needed if distribution, 
workstations, or remote test beds are desired. The software engineering 
environment instance based on the APCE is layered on top of these services. 
The instance provides users with project specific tools and procedures which 
will usually exercise the host services directly and the APCE major subsystems 
which exercise the host services through the APCE Interface Set (AIS). 

Since the APCE major subsystems use AIS calls, !he APCE is transported to a 
new hardware/OS/DBMS configuration by rehosting the AIS. Thus, the AIS 
provides the Kernel interface described by Stoneman and supports the goal of 
distribution. Since all database accesses must be made through the AIS, the 
AIS also supports the interoperability of project data. 

lMPLEMFNTATlON PHILOSOP H\1 

The AIS design reflects the implementation philosophy of the APCE as a whole. 
The architecture of the APCE is data coupled. That is, the APCE subsystems do 
not interface directly witti each other; rather, they interface via the AIS to the 
project database. The APCE adopts an open system approach ;awards the use 
of third party tools. The APCE controls lifecycle products which are entered into 
the database through user interaction with APCE subsystems. Thus, there are 
no constraicts on the tools used to develop the products. For maximum 
performance, the AIS is designed to function in conjunction with a modern 
operating system rather than on a bare machine. Tools do not have to be 
rehosted to tho AIS in order to be used. 

The AIS was developed by deflnlng a set of transportabil ity r u l e s  
that provide the maximum independence for applicolions (tools, programs. etc.) 
from the run time environment. For maxlmurn transportabi l i ty, it wzs 
determined that the applicatlon must have a logical view of the opera:lny 
services, the database services, communications services and the data it uses. 
The industry is evolving toward this conclusion, however, only a step at a time. 
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As an example, currently UNIXW2 is considered transportable and i t  does 
provide hardware independence, However, i t  does not provide applicatio 7 

independence any more than any other operating system. Accepting a 
operating system as the basis for transportability provides the application I 

highly constrained set of system services, database services, and 
communication services which may adversely affect the applications 
performance. Therefore a set of logical service interfaces was implemented that 
can be mapped to any operating system, file management /database 
management system and communication protocols. 

This AIS implementation has been proven transportable over a wide range of 
operating systems, file management/database management systems, and 
hardware. The AIS design approach assumes that the host system has been 
developed by the vendor to take full advantage of the hardware features of the 
computer. The host system should provide performance achievable on1 I 
through intimate study of the hardware system. The AIS takes advantage of t t  
host system performance and does not try to duplicate it. The performance 
the AIS should be the same as that of the services supplied by the host systen 

The AIS assumes that the following features t i e  supplied by the host system' 

o file management system/access mechanisms or dat abas 

o access controls; 

management system; 

o command processor with command script feature; 

o communications mechanism (e.g. VAXm3 DECnet) between host(s)/ 
workstations(s)/targets(s) if distribution or remote workstations or 
remote test beds are desired. 

The CAlS had no impact on the APCE development, however both the CAlS 
and the AIS had similar goals. The intent of both interfaces sets was to achieve 
transportability of tools between environments and to achieve interoperability of 
data between environments. The CAIS was in response to a need in the DoD 
for cost reduction and commonality of tools for software development. The 
same requirement fostered the AIS developed within PRC. PRC has many 
software development contracts running concurrently, and each contract has 
different required hardware, tools, and methods. Therefore, PRC requires an 
environment that is adaptable, transportable and allows interoperability of data 
and excellent performance on any host system, 

The AIS strategy is based on a layering of system services rather than on a 
specific system service interface model (such as the node model of the CAIS). 

2UNIXW is a registered trader ark of Bell Laboratories. 
3VAXTM is a registered trademark of Digital Equipment Corporation. 
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The APCE software is based on an interface into which the host system 
setvices that satisfy the Interface specllicatlons are mapped. The AIS design is 
based on the expected availability of certain host system services. If a service is 
not directly available, then extra layers of software which provide the needed 
enhancement are created below the interface layer to satisfy the requirement. 

Both the CAlS and the AIS attacked the problem at the interface layer between 
operating system services and the application programs. See Figure 3, 
AWCAIS Comparison, for AIS/CAIS comparison. As the diagram illustrates, 
the AIS provides services at a slightly higher level of abstractness than the 
CAIS. In addition, the AIS already has additional interfaces operational (DBMS, 
Communications) that the CAlS has not implemented as can be seen in Figure 
4, CAIS/AIS Major Functions. The CAlS also requires a significantly greater 
number of functions primary because of the node management requirement. 
The AIS terminal I/O implementation currently only handles form management 
functions, and therefore does not provide as rich a set of features as the CAlS 
terminal I/O provides. 

The primary difference between the AIS and the C A E  is the concept of the 
node model. The node model provides a method of organizing-files, directories, 
devices, queues, and processes into a form that can be manipulated by any 
APSE tool on any host that implements the CAE. The node model is similar to 
the implicit node model within the UNIXW operating system with some 
extensions. The AIS embraces the concept that applications (programs, tools) 
require only a logical view of the services, Therefore, the interface functions 
should be mapped into the existing system services providing these 
capabilities. 

The AIS provides only the logical view of the system services to the application 
which accomplishes two goals, total application independence and improved 
performance. Figure 5 ,  CAIS/AIS Implementation Differences, illustrates each 
implementation. 

Application independence is attained because dependence on structural or 
physical implementation of each service has been removed from the 
applications domain. This has not been attained in the CAlS because each 
application has knowledge of the node mcdel and therefore any change to the 
node model will require a change to all applications dependent upon that 
structural knowledge. 

The direct mapping of AIS services to system services enables an AIS 
implementatlon to operate as efficiently its host system. The CAIS, however, 
superimposed a control structure (the node model) on top of  existing services 
that may llmlt performance on a given CAlS implementation. 
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The APCE is currently available on six different computer systems: 
VAX/VMSW4, ROLM/AOS.VS, IBMIMVSMS and VM, and Intel 310 with 
XENIXW6. APCE processes can be distributed to the Macintosh'7 and soon to 
the IBM PC. The rehosting process for the AIS takes approximately 2 calendar 
months for a mainframe and 1 month for a mini- or micro-computer. Figure 6, 
Current AIS Rehosts, illustrates the current systems the APCE is available On 
and the time it took to accomplish this, both in months and staff months. 

APCE transportability has been attained using the AIS and a 'C' compiler. All 
APCE framework applications were designed using Adaw POL and 
implemented in IC'. This was done because the Ada compilers were not 
available on all the hosts targeted for the APCE. The use of 'C' has not been 
without problems. Current implementations are using five (5) different 'C' 
compilers and as each new compiler has been introduced a 'C' subset has 
been defined. All APCE applications must be normalized to any new subset. 
This has entailed a five to ten percent code modification for each new subset. 
However, all new applications use the subset and are completely transportable. 
Because PRC must validate each 'C' compiler used for APCE code, the APCE 
will be recoded in Adam when validated compilers are available. 

The APCE has the advantage that it can be installed in an existing configuration 
with minimal distruption of the current way of doing business. It provides a clear 
transition path into a better disciplined engineering process and allows new 
advances in automated tools to be incorporated. It does not, however, shield 
the users from a need to understand the native operating system or  tool 
command language. This is not viewed as a disadvantage at this time since 
standardization of these features does not seem to be possible. Premature 
standardization of these features by an environment may ensure its technical 
obsolescence or, at best, enforce a delay while new tools are rewritten or 
rehosted. Such standardization is also not possible for a software house which 
works with a wide client base with widely differing requirements and standards 
for their software development and maintenance projects. 

The APCE also does not provide the tight integration of tools. The user is still 
responsible for ensuring that the output of one tool is suitably modified to be 
acceptable as input for the next. This is one of the areas in which future work 
needs to be done to relieve the users of the more clerical types of work. 

4VMSTH is a registered trademark of Digital Equipment Corporation. 
slBM/MVSm is a registered trademark of International Business Machines, Inc. 
6XENIXm is a registered trademark of Microsoft Corporation. 
7Macintochm is a registered trademark of Apple Computer, Inc. 
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The APCE framework provides signiflcant advantages and can be used by a 
project without new hardware or significant retooling. It provides an immediate 
benefit without locking out future advances in software tools and techniques by 
managing the process and products rather than focusing on tools. The APCE 
provides a different approach to the software engineering environment problem. 

PRC has been successful in rehosting the APCE to six different operating 
systems, with 4 different file managemenVdatabase management systems that 
use 2 different sets of communication services without affecting the APCE 
applications. Since these different APCE Instances can exchange project data 
and any APCE application is transportable between APCE instances, the AIS 
attain3 true appllcatlon Independence. 

The benefits of using an AIS llke Interface opens the options for the 
Space Station Software Support Environment (SSE) configurations. 
No longer constrained to only hardware Independence by operating 
system transportability; now a truly heterogeneous SSE can be configured. 
This environment will be able to take advantage of all the required 
technology while maintaining a consistent single environment through the 
SSE applications (tools and framework). The SSE will be truly evolvable 
since host services are divorced from the SSE itself therefore allowing new 
services (O/S, DBMS, communication and hardware) to be introduced and 
obsolete services to be retired without dlsruptlon to operations, 
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CONSTRUCTING A WORKINQ TAXONOMY OF FUNCTIONAL Ada SOFTWARE 
COMPONENTS FOR REAL-TIME EMBEDDED SYSTEM APPLICATIONS 

Robert Wallace 
Reseach Triangle Institute 

Research Triangle Park, North Carolina 

A major impediment to a systematic attack on Ada software 
reusability is the lack of an effective taxonomy for software 
component functions. 
Ada software is considered too great to allow the practical 
development of a working taxonomy. 
this paper the scope of Ada software application is limited to 
device and subsystem control in real-time embedded systems. A 
functional approach is taken in constructing the taxonomy tree for 
identified Ada domain. The use of modular software functions as a 
starting point fits well with the object oriented programming 
philosophy of Ada. Examples of the types of functions represented 
within the working taxonomy are real time kernels, interrupt 
service routines, synchronization and message passing, data 
conversion, digital filtering and signal conditioning, and device 
control. The constructed taxonmy is proposed as a framework from 
which a need analysis can be performed to reveal voids in current 
Ada real-time embedded programming efforts for Space Station. 

The scope of all possible applications Of 

Instead, for the purposes Of 
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ABSTRACT 

Visual izat ion,  Daeign, and V e r i f i c a t i o n  of Ada@ T a s k i n g  
U d n g  Timing Diagrams 

RIP. Vidala*, P.A. Stulewaki**,  and J . B .  Weies** 

T h i s  paper recommends the u s e  of t iming  d iagrams i n  t h e  d e s i g n  and 

t e s t i n g  of m u l t i - t a s k  Ada programs. By d i s p l a y i n g  t h e  t a s k  s t a t e s  v s .  

time, t i m i n g  d iagrams can p o r t r a y  the simultaneous t h r e a d s  of d a t a  f low 

and control which c h a r a c t e r i z e  t a s k i n g  programs. T h i s  d e s c r i p t i o n  of t h e  

s y s t e m ' s  dynamic b e h a v i o r  from c o n c e p t i o n  t o  t e s t i n g  is a n e c e s s a r y  

. adjunct  to o t h e r  g r a p h i c a l  t e c h n i q u e s ,  such  as structure c h a r t s ,  which 

e s s e n t i a l l y  g i v e  d s ta t ic  view of t h e  system. A series of s t e p s  i s  

recommended which i n c o r p o r a t e s  t iming  d iagrams i n t o  t h e  d e s i g n  p r o c e s s .  

F i n a l l y ,  a description is provided  of a p r o t o t y p e  Ada M e c u t i o n  Analyzer  

(Am) which automates t h e  p r o d u c t i o n  of t i m i n g  d iagrams from VAX/Ada 

debugger  o u t p u t .  

1 .O I n t r o d u c t i o n  

C o n c u r r e n t  programming b r i n g s  a n o t h e r  d imens ion  of c o m p l e x i t y  t o  

t h e  problem of s o f t w a r e  d e s i g n  and t e s t i n g .  Unlike s e q u e n t i a l  p r o g r a n -  

ming, where f u n c t i o n a l  decomposi t ion  allows the d e s i g n e r  to concentrate on 

one module a t  a time, c o n c u r r e n t  programming i n  Ada r e q u i r e s  t h e  coordin...,- 

t i o n  of many modules ( t a s k s )  e x e c u t i n g  i n  paral le l .  The r e q u i r e m e n t s  f o r  

task sequencing  must be e s t a b l i s h e d  e a r l y  in t h e  d e s i g n ,  and c a r r i e d  

through i n t o  t h e  t r a d i t i o n a l  domain of  d e t a i l e d  d e s i g n .  An i n c o m p l e t e  

u n d e r s t a n d i n g  of t h e  t a s k  sequencing  r e q u i r e m e n t s  or t h e i r  erroneous 

i m p l e m e n t a t i o n  is an i n v i t a t i o n  to  d i s a s t e r .  

Doston U n i v e r s i t y ,  Boston, MA 
*'The C h a r l e x  S ta rk  Draper L a b o r a t o r y ,  Inc . ,  Cambridge, 
@ Ada is a r e g i s t e r e d  t rademark of t h e  U.S. COverrImerlt, M a  Joitlt PrOtJram 

O f f  ice. 
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Most available s o f t w a r e  development tools and t e c h n i q u e s ,  based  on 

func t iona l  decomporition, do not  adequately p o r t r a y  time dependency and 

t h u s  do n o t  help the developer visualize,  d e s i g n ,  and v e r i f y  task sequenc- 

i W *  Tasking ,  an a programming t e c h n i q u e ,  p r e e e n t a  o p p o r t u n i t i e s  to i m -  

Prove Product iv i ty ,  m a i n t a i n a b i l i t y  and p o r t a b i l i t y ,  b u t  also i n t r o d u c e s  

the possibility of programming errors unique  to t a s k i n g .  Incorrect d e s i g n  

O r  i m p l e m e n t a t i o n  o f  t a s k i n g  w i l l  produce unin tended  t a s k  sequencing  which 

a t  best d e g r a d e s  sys tem performance,  a t  worst r e s u l t s  i n  d e a d l o c k ,  

d e a d n e s s ,  or s t a r v a t i o n .  

W i t h i n  t h e  past t h r e e  y e a r s ,  a number of o b j e c t - o r i e n t e d  d e s i g n  

methods have been proposed s p e c i f i c a l l y  f o r  Ada. See Booch 1BOOC831, Buhr 

(BUHR841, and C h e r r y  [CHER85] ,  f o r  example. These methods a l l  u s e  t h e  

s t r u c t u r e - c h a r t  t y p e  of diagram to  d e s c r i b e  t h e  a r c h i t e c t u r e  of  an Ada 

program. With t h e  e x c e p t i o n  of  Buhr, whose d iagrams i n c l u d e  some tempora l  

n o t a t i o n s ,  t h e s e  r e p r e s e n t a t i o n s  are e s s e n t i a l l y  s t a t i c ,  and as such  a r e  

o f  l i m i t e d  u s e  i n  v i s u a l i z i n g  t h e  o v e r a l l  sequencing  of t a s k  i n t e r a c t i o n s  

i n t e n d e d  for a d e s i g n .  Buhr d o e s  make l i m i t e d  use  of t i m i n g  d iagrams i n  

h i s  book (BUHRBQ] to i l l u s t r a t e  the rendezvous,  b u t  d o e s  not: i n c l u d e  them 

i n  t h e  d e s i g n  p r o c e s s .  

I t  is t h e  o p i n i o n  of tho  a u t h o r s  t h a t  t iming  d iagrams are a neces-  

s a r y  a d j u n c t  to s t ructure  c h a r t s  and should  be used i n  c o n j u n c t i o n  w i t h  

them f i r s t  to d e s i g n  an Ada t a s k i n g  program, then  l a t e r  to v e r i f y  t h a t  i t  

is behaving  as e x p e c t e d .  Ta i  (TAIK861 h a s  a lso recognized  t h e  v a l u e  of 

t i m i n g  diagrams ( rendezvous  qraphs, i n  his t e rminology)  for debugging Ada 

t a s k i n g  programs but does n o t  a d v o c a t e  t h e i r  use  i n  t h e  d e s i g n  p r o c e s s .  

2.0 Timing Diaqramfl i n  Program Development 

Timing d iagrams a r e  u s e f u l  to Ada progrdm d e v e l o p e r s  a t  s e v e r a l  

phases i n  t h e  l i f e  cycle. D a m  € l o w  sequencing  m u s t  he c o n s i d e r e d  d u r i n t ~  

t h e  r e q u i r e m e n t s  a n a l y s i s ,  p r e l i m i n a r y  d e s i g n ,  d o t a i l e d  d e s i q n ,  dcbuqqincJ,  

and t a s t i n q .  W i t h  taskir iq  t h c  p r o p o r t i o n  of time devoted  to d e s i q n ,  i n  

r e l a t i o n  to implement t i t ion ,  i s  much y r e a t e r  than  f o r  s e q u e n t i a l  programs. 

wc p r o p s e  t h e  f o l l o w i n q  s t e p s  for  m u l t i - t a s k  Ada program development  f o r  

c ja ininq c o n f i d e n c e  i n  the d c a i q n  b e f o r e  and a f t e r  implemonta t ion .  
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t .  1. Vimualize objeotr and d a t a  flows using *cloud diagrams” t o  

reprerent ob jec t s  i n  the problem domain. Single  threads of 

d a t a  flow can be shown by numbering them i n  sequence, b u t  

mult iple ,  i n t e r a c t i n g  threads a r e  d i f f i c u l t  to show. 

2. Use preliminary timing diagrams, which do not show d i r e c t i o n s  

of c a l l a ,  t o  ahow scenarios of required task i n t e r a c  t ion.  

Steps 1 and 2 a r e  problem-domain r ep resen ta t ions ,  

3. Define Ada da ta  structures and code and compile g loba l  d a t a  

t y p e s  

4. Transform the problem-domain o b j e c t s  i n t o  Ada program u n i t s  and 

portray these with s t ructure  graphs showing c a l l e r - c a l l e e  

r e l a t ionsh ips .  Refine the preliminary timing diagrams t o  show 

c a l l e r - c a l l e e  r e l a t i o n s h i p s  with t a s k  ready/blocked s t a t e  

ir‘ormation. 

5.  Code the s t r u c t u r e  graphs i n  Ada as program u n i t  trpecifica- 

t ions.  

6. Code c o n t r o l  skeletons i n  the program u n i t  bodies to  implement 

the task i n t e r a c t i o n s  v i sua l i zed  i n  the timing diagrams and 

annotated s t r u c t u r e  graphs. 

7. Execute the code skeletons and generate  a timing diagram. 

8 .  Compare timing diagrams aga ins t  des i r ed  behavior.  

9. Revi se  d e s i g n  a s  necessary. 

10. Complete Detailed Design of program u n i t  bodies.  

I I .  Generate timing diagrams t o  ve r i fy .  

3.0 Automated Timing Diagram Generation 

Automatod s u p p o r t  for  the timing diagrams described i n  the precccd- 

ing sec t ion  is not ,  t o  these authors’  knowledge, p u b l i c a l l y  a v a i l a b l e ,  b u t  

would r equ i r e  two forms: p red ic t ive  and a c t u a l .  



The preliminary timing diagrams would be predict ive of the 

ptOgr(M'B behavior. Thaae diagram8 would be drawn before any code is 

writ ten to  guide the developer i n  cons t ruc t ing  t h e  f i r s t  level  of t a s k  

interact ion.  Successive, nc tua l  timing diagrams would be derived by 

sirnulatin9 or executing program units and automatically extract ing task 
trace infomat ion ,  

To date ,  no work has been done to develop automated support for the 

predict ive diagrams, which is still e manual procesu. I t  is, however, 

feas ib le  tha t  a system, using formal specif icat ion And an asser t ion  

checker, could be developed to  support t h i s  ac t iv i ty ,  There has, howover 

been some work done by the authors of t h i s  paper i n  the development of a 

too l  f o r  generating actual  t i m i n g  diagrams of multi-taak Ada proqrams. 

4 . 0  The Ada Execution Analyzer Prototype 

The Ada Execution Analyzer (Am) Prorotyw has bcan developed at. 

The Charles Stark Draper Laboratory, Inc. (CSDL), to exp l i c i t l y  show the 

r e l i t i c n s h i p  of time, concurrent oper..tions, and task communication u s i n g  

the timing diagram format for multi-task VAX/VMS Ada programs. The AFA 

provides the capabi l i ty  t o  visual ly  monitor the runtime execution of 

m u l t i t a s k  Ada programs developed i n  the DEC VAX/VMS Ada Develnyinent 

mvironment. The AEA is r u n  as  an extension to  the VAX/VMS Symbolic 

Debugger, and t h u s  provides a l l  the capabi l i t i es  of tha t  debugger plcs a 

graphic display of task execution. 'Ihe AEA produce8 both an overview 

timing diagram whlch shows up to  20 Ada tasks,  and a d e t a i l e d  tirni:rg 

diagram which shows up to 5 selected tasks. An oxample Ovarview Timinq 

Diaqram is shown i n  Figure 1 and an example Detailed Timing Diac~ram is 

qhown i n  Figure 2. The symboloqy uaed i n  both diacjrams is defined i n  

T i i h l c s  1 and 2.  

I 
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The AEA provides g r a p h i o  t iming dibgrAm8 on demand from a program 

run, s c g n i f i c a n t l y  r e d u c i n g  t h o  debugging timo for  mu1ti tar .k  programs . 
Tho a v a i l a b i l i t y  of euch a tool make practical the method o u t l i n e d  i n  

Section 2.0. 

The Am P r o t o t y p e  i o  writ ten  i n  VAX/Ada and wila r e l o a s e d  for  

icrternal use a t  CSDL in mcamber 1985. As a r a p i d - p r o t o t y p e ,  t h e  AEA was 

produced q u i c k l y  i n  order to allow u a e r b  erne f u n c t i o n a l i t y  and t h e  oppor- 

t u n i t y  to s u g g e s t  enhancements.  'Lb date, the AEA h a s  been  used to debug 

some small t a s k i n g  programs f o r  both real projects and in-house Ada t r a i n -  

Jng problems. User crcceptanco of  the tool h a s  been g e n e r a l l y  f a v o r a b l e  

and the tool w i l l  l i k a l y  be m a i n t a i n e d  as a corporate r e s o u r c e .  

5.0 F u t u r e  E x t e n s i o n s  

m t e n s i o n s  to t h e  AEA f a l l  i n t o  t h r e e  c a t e g o r i e s :  short-term, 

medium-term, and long-term. Short-term e x t e n s i o n s  ( w i t h i n  6 months) will 
f o c u s  o n  making the c u r r e n t  AEA implementa t ion  more u s e r  f r i e n d l y  and 

i n c l u d i n g  some o p t i o n s  t o  reduce  c l u t t e r  i n  the diagram8 by s e l e c t i v e l y  
b l a n k i n g  t a s k s  fraa the diagram. 

Medium-term e x t e n s i o n s  ( w i t h i n  18 months) w i l l  f o c u s  on t r a n s p o r t -  

i n g  the AVA t o  a n  embedded microprocessor development  envi ronment  i n  order 

to e x t r a c t  t iming  d iagrams f t a a  a target  p r o c e s s o r .  

Long-term e x t e n s i o n s  (beyond 18 months) might i n c l u d e  a u t o m a t i c  
t a s k  sequence  c h e c k i n g  and a u t o m a t i c  g e n e r a t i o n  of program u n i t  body con- 

t ro l  s k e l e t o n s .  These e x t e n s i o n s  r e q u i r e  t h e  u s e  of a formal s p e c i f i c a -  

t i o n  t e c h n i q u e  l i k e  t h e  Task Sequencing Language (TSL) [HmM851 d u r i n g  

development .  

6.0 C o n c l u s i o n s  

Ada t a s k i n g  adds a new dimens ion  of c o m p l e x i t y  which is hard  t o  

v i s u a l i z e  u s i n g  e s t ah l i shed  g r a p h i c a l  d e s i g n  methods. With t h i s  added 

c o m p l e x i t y ,  it is e s s e n t i a l  to work o u t  t h e  r e q u i r e d  task  s e q u e n c i n g  e a r l y  
i n  t h e  d e s i g n  and have a means for v e r i f y i n g  t a s k  s e q u e n c i n g  b e h a v i o r  

d u r  inlj  tes t i n q .  

D.3.2 .5  



Timing d i a g r a m s  are a natural ,  e a s i l y  u n d e r s t o o d  means of v i s u a l i z -  
ing task sequencing i n  t h e  conceptual and t e d t i n g  p h a s e s  of c o n c u r r e n t  
program development .  Timing diagrams can e v o l v e  w i t h  t h e  d a t a - f  low 

picture of a system. They c a n  show time e x p l i c i t l y  and c a n  i l l u s t r a t e  

multiple threads of c o n t r o l  i n c l u d i n g  t h e  e f f e c t e  o f  time s l i c i n g .  I n  

t h i s  manner t h e y  can be used to i d e n t i f y  s e r i o u s  t a s k i n g  errors l i k e  

d e a d l o c k ,  race c o n d i t i o n s ,  and s t a r v a t i o n .  

A p r o t o t y p e  Ada Execution Analyzer  , which produces  t i m i n g  d iagrams 

from VAX/Ada debugger  o u t p u t ,  h a s  d e m o n s t r a t e d  t h e  v a l u e  o f  t i m i n g  d i a -  

grams i n  u n d e r s t a n d i n g  t h e  b e h a v i o r  of  a n  Ada program w i t h  m u l t i - t a s k i n g .  
The a u t h o r s  b e l i e v e  t h a t  t h e  expanded role for t i m i n g  diagrams s u g g e s t e d  

i n  t h i s  paper w i l l  r e s u l t  i n  fewer d e s i g n  errors i n  m u l t i - t a s k i n g  

a p p l i c a t i o n s  u s i n g  Ada. 
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Figure 1. A E A  Overview Diagram 
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BANK, 
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I (CALL 
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ACCEPT TASK 8 
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0 

ACCEPT TASK 9 
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I 
<CALL 

0 

0 

ACCEP 
ASK 

i 
<CALL 

RNDZV TASK 2 
A S S I G N  

I 
(CALL 

TASK 10 

ACCEPT TASK 3 
R E A D Y  

b 

<ACCEPT 

(CALL 

RNDZV TASK 2 
ASK 

I 

Figure 2. A E A  Detailed Timing Diagram 
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TASK STATES 

TIMING OVEXVIEW 
DIAGRAM DIAGRAM 
SYMBOLS SYMBOLS MEANING 

TASK N ( # )  Rs Task number N wi th  p r i o r i t y  
P# 1 

UNITeTASK-NAME 
I 

Logicdl name of program 
u n i t  t h a t  d e c l a r e s  TASK. 
NA ME - 
POINTS O F  RENDEZVOUS: 

ZNDZV TASK I R# Task has  rendezvoused w i t h  
task # 

Task $.ENTRY NAME - CNTRY-NAME 

LCCEPT TASK # A# Task has a c c e p t e d  c a l l  from 
t a s k  r) 

A c c e p t  ENTRY NAME W I R Y  - NAME 
.- 

TASK STATES: c 
c 

c 
Task i s  running  

Task is ready  to  run 

0 Task is suspended  

I I 
TERM <T Task has  t e r m i n a t e d  
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TIMING OVERVIW 
DIAGRAN DZAGRAH 
SYMBOLS SYMBOLS TASK SUBSTATE MERNIUG 

CCompleted[ab 

:Comple t e d  1 ex 

:Completed 

 de l a y  

:Dependents 

, .  

CAB Abnormal 

<A Accept 

<CA Completed[abnl 

<CE Completed [exc]  

<CO Completed 

<DL Delay 

<DP Dependent8 

Task h a s  been aborted. 

Task is wai t ing  a t  an a c c e p t  
statement t h a t  is no t  i n s i d e  
a select statement. 

Task is completed due to an 
a b o r t  s ta tement ,  b u t  is n o t  
y e t  terminated.  I n  Ma,  a 
t a s k  awa i t ing  dependent  
t a s k s  a t  i t s  "end" is c a l l e d  
"completed" . A f  ter the  
dependent  t a s k s  are termin- 
a t e d  the  s t a t e  changes to 
t e rmina ted  . 
Task is completed due to an 
unhandled except ion ,  b u t  i s  
n o t  y e t  terminated.  In  Ada, 
a t a sk  awai t ing  dependent 
t a s k s  a t  i ts  "end" is c a l l q d  
"completed". Af te r  t he  de- 
pendent  t a s k s  are termin- 
ated, the  s t a t e  changes to  
te rmina ted  . 
Task is corcpleted. NL sbort 
s t a t emen t  w a s  i s sued ,  and no 
unhandled except ion  occured. 

Task is wa i t ing  a t  a de lay  
s t a  tement. 

Task is wa i t ing  f o r  depen- 
d e n t  t a s k s  t o  te rmina te .  
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Table 2. AEA Overview rnd Detailed Diagram Substates (Part 2 of 2) 

TI M I  NG OVERVIEW 
DIAGRAM DIAGRAM 
SYMBOLS SYMBOLS TASK SUBSTATE MEANING 

<Dependents 

<CALL 

e 

( Inva l id  S t a t e  

<I/O or AST 

(Se lec t  or  d e l  

<Se lec t  o r  Ter 

<SELECT 

<Shared resour 

<Terminated [ a  

<Te rmf nated [ e  

< Termi nated 

<Timed en t ry  

<DE 

<C 

<IV 

< IO  

< SD 

< ST 

<S 

<SR 

<TA 

<TE 

<m 

<TI 

Dependents [excl 

Entry ca l l  

Inva l id  s t a t e  

I / O  O r  AST 

S e l e c t  or  de l ay  

S e l e c t  or term, 

Se lec t  

Shared resource 

Terminated [abnl 

Terminated [exc ] 

Te rm i na t ed 

Timed entry c a l l  

Task is wait ing f o r  
dependent tasks  to allow an 
unhandled exception t o  
p ropdga te . 
Task is wait ing f o r  i t s  
en t ry  c a l l  t o  be accepted. 

There is a bug i n  the VAX 
Ada run- time l i b r a r y .  

Task is waiting f o r  1/0 
completion or  some AST. 
(Asynchronous sys tem t rue  1 .  

Task is wait ing a t  a s e l e c t  
staternent with a delzy 
a1  t e  rna ti ve . 
Task is waiting a t  a s e l e c t  
statement with a terminate 
a1 t e r n a t i v e ,  

Task is waiting a t  a s e l e c t  
s ta tement  with n e i t h e r  an 
e l s e ,  delay,  or  terminate 
a l t e r n a t i v e .  

Task is waiting f o r  an i n -  
t e r n a l  shared resource. 

Task was terminated by an 
abort .  

Task was terminated because 
of an uhandled exception. 

Task t ermina tcd norma 11 y . 
Task is waiting i n  a timed 
en t ry  c a l l .  
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Ada* and Cyclic Runtime Scheduling 

P h i l i p  E. Hood 
SofTech Inc. 

Abstract 

6 An ~mportant issue that must be faced while introducing Ada into the real 
t h e  world is efficient and predictable runtime behavior. One of the most 
effective methods employed during the traditional design of a real time system 
is the cyclic executive. Thia paper examines the role cyclic schedullng might 
Play in an Ada application in terms of currently available implementations and 
in terms of implementations that might be developed specifically to support 
real time system development. 

The cyclic executive solves many of the problems faced by real time 
designers, resulting in a system for which it is relatively easy to achieve 
appropriate timing behavior. Unfortunately a cyclic executive carries with it 
a very high maintenance penalty over the lifetime of the software that i t  
schedules. Additionally, these cyclic systems tend to be quite fragile when 
any aspect of the system changes. 

This paper presents the findings of an ongoing SofTech investigation into 
Ada methods for real time system development. Section 1 discusses cyclic 
scheduling in general - what it is and why i t  is used. Section 2 examines how 
cyclic scheduling might be applied to Ada real time systems. Methods of 
introducing cyclic schedulers into applications without violating Ada 
semantics is explicitly discussed. Several classes of cyclic schedulers will 
be evaluated on their compatibility with the Ada world. Section 3 briefly 
examines how future systems might use a cyclic scheduler without paying the 
high price levied upon current systems. The topics covered include a 
description of the costs involved in using cyclic schedulers, the sources of 
these costs, and measures for future systems to avoid these costs without 
giving up the runtime performance of a cyclic system. 

1.0 Cyclic Executive Description - 
A cyclic executive provides a mechanism for enforcing a predetermined 

ordering of processing events in a system. All processing to be performed is 
arranged within a schedule of finite duration. This schedule is repeated at a 
specified rate called the major cycle. The major cycle is broken down into a 
number (usually a power of two) of equal minor cycles. Each minor cycle is 
assigned a processing frame containing a list O E  processing elements 
(routines) to be performed during the associated minor cycle, An example of 
the basic cyclic executive structure is shown in Figure 1. ..................................... 

Ada is a registered trademark of the U.S. Government (AJPO) 
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Figure 1 - An Example Cyclic Executive Structure 
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Although a l l  CYOliO OXocutlvor rhar8 the structure we have described, 
th8y vary in rlmort OV8ry othor arpout, Many types of cycllc executives have 
b80n d8v8lOpod to rupport variour appllcrtlonr, and each one Is dlfferent from 
the last.  80a8 O f  these variations, much 111 mode changes, varying frame 
assignments and handling frame overruns, are discussed below. 

1.1 Mode Changes 

One of the advantages of a cyclic executive is that the static schedule 
can be tuned to optimize the system's timing performance for the expected load 
conditions. The load on the system, however, may not be constant. A change 
in the system load may cause the cyclic executive to allocate run time in a 
very inefficient manner (a job with a long allocated run time may have little 
or no processing to perform), 

To solve this problem mode changes are introduced into the system. A 
mode change can change both the processing to be performed and the cyclic 
schedule. The more variation possible in the loading of the system, the more 
mode changing operations will be necessary. Each mode change is expensive in 
terms of new coding and tuning that must be performed and in terms of the 
damage to the program structure that always accompanies tuning operations. 

1.2 Varying Frame Assignments 

Schedule variations do not always require a mode change. If the 
variations can be localized to one frame, then that frame can use a local 
scheduler to resolve the problem. This solution of course, requires the 
overhead of some run time scheduling. Moreover, every possible scheduling 
possibility must be verified during system tuning. 

1.3 Handling Frame Overruns 

The greatest amount of variation between cyclic executives lies in the 
handling of frame overruns. We will consider the following four methods, b y  
no means a complete list (many variations and hybrids exist): overruns 
ignored, overruns logged, overruns suspended, and overruns terminated. 

1.3.1 Overruns Ignored 

In some systems the problem of frame overrun can be adequately addressed 
during system debugging; these systems may choose to ignore overruns during 
runtime. The designer 1s responsible for verifying that overruns can never 
occur. This type of executive is typical of systems with either very simple 
software or over-confident designers. 
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is appropriate 
when' 8 "framo overruns, This 
approach resultr in asvery realistic oxocutivo for any rystem in which tuning 
issues can bo adequately addressed, In a properly tuned cyclic executive 
application, ftamer rhould not bo overrunning. Thur i t  this type of scheduler 
is inadequate, it implies that a cyclic schedule is not capable of providing a 
reliable rchedule for that application and must be enhanced. 

' T h h  itratogy ir w e d  in lrysIomr whore no runtime action 
Tho overrun ir rocordod for handling o f t  line, 

I 
8 L 

I 
! 

1 

1.3.3 Overruns Suspended 

When a frame overruns in this type of system, it is suspended and the 
next frarar is allowed to start on time. When ther8 is free time the suspended 
frame is allowed to complete. 

This method greatly complicates data access in the application software. 
A built-in efficiency of a cyclic executive is the SynChrOnltAtiOn implied by 
static frame assignments. Additional synchronization is normally unnecessary 
during shared data references. When frame suspension is introduced, the 
implied synchronization is disrupted, and consequently references to shared 
data must include the appropriate synchronization mechanisms. 

1.3.4 Overruns Terminated 

When overruns occur in a system using this strategy, the overruning frame 
is terminated. It is restarted from the beginning at its next scheduled start 
time. This mechanism avoids the synchronization problems of the suspension 
mechanism but introduces its own problems. Software components that could 
possibly overrun frame boundaries must be written very carefully so that 
valuable data is not lost. There is also a potential problem with data that 
is incompletely updated when the frame is terminated - if this data is used by 
other components, serious problems could arise. 

2 . 0  Ada Implementation 02 Cyclic Executives - 
Some varieties of cyclic executive fit very well into Ada, others do not 

map so naturally into the language. 

The basic cyclic structure is fairly easy to implement in Ada. Mactaren 
(11 and Hood 121 show how to write simple cyclic executives in Ada. The basic 
cyclic scheduler for this type of cxecutlve is shown in Figure 2. This type 
of executive ignores the issues of varying loads and overrunning Erames. 
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with Frame-Package1 
package body Executive is 

task Cyclic-Scheduler i r  

end Cyclic-Scheduler; 

entry Minor-Cycle-Tickt 
for Minor-Cycle-Tick use at BIL00054t; 

task body Cyclic-Scheduler is 
begin 

loop --forever 
accept Minor-Cycle-Tick; 
Frame-Packaqe.Frame-1; 
accept Minor-Cycle-Tick; 
Frame-Package.Frame-2; 
accept Minor-Cycle-Tick; 
Frame-Package.Frame-3; 
accept Minor-Cycle-Tick; 
Frame-Packaqe.Frame-4; 

end loop! 
end Cyclic-Scheduler1 

end Executive; 

Figure 2. A Simple Cyclic Executive 
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The Simple 8tructure can bo easily expanded to incorporate mod* changes 
and vatiable tram0 assignmentr. ~ i g u r e  3 showr A cyclic executiva with mode 
Changing. Each modo i s  represented by a complete list of frames to be 
scheduled in that bode. At the beginning of each major cycle, the executive 
decider which schedule to run. Varying frame assignments require no change to 
the Cyclic schedulerr instead a local scheduler is created in the varying 
frame as ehown in Figure 4.  

Overruns can be logged by adding a task to receive the periodic interrupt 
and to check whether or not the previous schedule has completed. This type of 
scheduler is shown in Figure 5.  

None of the cyclic variations discussed so far has been difficult to 
implement in Ada. The last two variations, namely overrun suspension and 
termination, are considerably more difficult. In both cases, these executives 
could only be written if they were heavily supported by the underlying r u n  
time system. 

The only asynchronous scheduling point provided by Ada occurs when an 
interrupt is received, so this fact must be used in both the Suspension &.Id 
termination variations. Asynchronous response to an interrupt is not 
guaranteed by the Ada specification, however any Ada implementation that has 
any value in the development of real time systems have to provide asynchronous 
interrupt handling. The only ways to terminate an executing piece of Ada code 
are either to raise an exception or to abort the task, Asynchronous 
exceptions are not allowed in the Ada semantics, leaving only the abort 
statement. The abort statement is not guaranteed to stop the aborted task 
from executing at any particular time. Therefore, a frame termination 
executive could be written in Ada only if the underlying implementation 
guarantees the immediate termination of aborted tasks. 

The overrun suspension executive has similar problems. The only way to 
ensure the new frame will have precedence over the old one is to introduce the 
new frame as a task with higher priority than the old frame task. This 
technique works for the frames in a given major cycle, but when the first 
frame is reintroduced at the beginning of the next major cycle, it must wait 
for all the frames from the previous major cycle to complete before starting. 
This behavior is clearly not desirable. In order to implement this type of 
executive in Ada, the implementation must provide some sort of dynamic 
priority mechanism. Standard Ada priorities are not dynamic, thus a 
additional priority scheme must be introduced. These new priorities can not 
interfere with the workings Of the Ada priority system but can be used to 
assign priority to tasks that either have no standard Ada priority, 
o r  have the same standard priority. 

relative 

In general, these executives require more control over the processing 
resources than can be obtained Using a single thread of control (single Ada 
task). The resulting cyclic executive must be implemented using Ada tasking 
€acilities. Ada tasking facilities, however, lack support for the primitive 
(and often dangerous) functions necessary for these variations of the cyclic 
executive. 
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with FrameJackage; 
package body Executive 1s 

task Cgclic-Schedul*r is 

end Cyclic-Scheduler; 

entry Micx-Cycle-Tick; 
for Mlnor_Cyclr-Tlck use at 81100054@; 

task body Cyclic-Scheduler is 
type Mode-Typo is (Mode-1 Modr-2 ) ; 
Mode: Mode-Type := Mode-1; 

begin 
loop --forever 
cage Mode is 

when kiGde-1 => 
accept Minor-Cycle-Tick; 
Frame-Package.Frame-1; 
accept Minor-Cycle-Tick: 
Frame-Package.Frame-2; 
accept Minor-Cycle-Tick; 
Frame-Package.Frame-3; 
accept Minor-Cycle-Tick; 
Frame--Packdge. Frame-4 t 

accapt Minor-Cycle-Tick; 
Frame-Package.Frame-It 
accept Minor-Cycle-Tick; 
Frame-Package.Frame-2: 
accept Minor-Cycle-Tick; 
Fra~o-Package.Frame-1; 
accept Minor-Cycle-Tick; 
Frame-Package.Frame-2; 

when Mode-2 => 

end casei 
end loop; 

end Cyclic-Scheduler; 
end Execut ive ; 

Figurc 3. A Cyclic Executive with Mode Changing 
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'. tark 'CycliclSchedulet is 
'entry Minor-Cycle-Tick; 
for Minor-Cycle-Tick ure a t  8i1000541; 

end Cyclic-Scheduler a 

task body Cyclic-Scheduler ir 

begin 
Statu88 Frame-Package,Statur-Type I=  Frame_Package.Status-Type'Firrti 

loop --forever 
accept Minor-Cycle-Tick; 
Fraare-Package.Frame-1i 
accept Minor-Cycle-Tick; 
Frame-Package.Frame-2; 
accept Minor-Cycle-Tick; 
Frame_Package.Frame-3i 
accept Minor-Cycle-Tickt 
Frame-Package.Frame-4 (Status); 

end loop; 
end Cyclic-Scheduler1 

end Executive; 

separate (Frame-Package) 
procedure Frame-4 (Status I in Status-Type) 1s 
begin 

0 
C1SQ Status iS 

whim Good 8 ,  

Application-1; 
Application-Zt 

Application-1: 
when others => 

end case8 
end Frame-4; 

Figure 4 .  A Cyclic Executfve with Frame Level Scheduling 
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..". ..., *. 

with drror-Handling_Pickrgr; 
with Pram@-Packagrt 
paCkag8 body EX8CUtiVO i8 

' task Pick-Handlrr i 8  
rnt r y Clock-P ic k ; 
tor Clock-Tlck use a t  811000541r 

f rnd Pick-Handlrt; 
1 

. task Cyclic-Scheduler is 

end Cyclic-Scheduler; 
entry Minor-Cycle-Tick; 

&ask kuidg pld&JimL?ua d.s 

loop -- forever 
accept Clock-Tick; 
select 

else 

end select; 

Cyclic-Scheduler.Minor_Cyclr_Tick; 

Error-Handling-Package.Log-Overrun; 

end loop; 
end Tick-Handler8 

task body Cyclic-Scheduler is 
begin 

loop --forever 
accept Minor-Cycle-Tick; 
Frame-Package.Frame-1; 
accept Minor-Cycle-Tick; 
Frame-Package.Fcame-28 
accept Minor-Cycle-Tick; 
Frame-Package.Frame-38 
accept Minor-Cycle-T'.ck; 
Frame_Package.Frame_~~ 

end loop; 
end Cyclic-Scheduler: 

end Execut ive; 

Figure 5. A Cyclic Executive with Overrun Logging 
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1.0 Avoidinq the Cost & Cvclic Schedulinq 

Cyclic scheduling ir very costly over the lifetime of a software System. 
The reason is very rimpler cyclic systems require software to be developed in 
modules according to their time consumption rather than according to 
functional coneiderations. Two phase8 o i  development are totally dominated by 
the timing structure of a cyclic executlve; detailed design/coding stage and 
tuning. During detailed design, frame assignments are designed and coded 
SPecfficallY to fit into their assigned time slots. Functionality is traded 
back and forth between routines and frames, depending on where there is time. 

Tuning can be though of as temporal debugging, during which timing errors 
are found and corrected. The correction methods include dividing up existing 
routines and shifting functionality between frames and routines. The end 
result io a very fragile schedule which meets the timing requirements but 
suffers several drawbacks: minor changes are likely to have sufficient impact 
on the schedule to require complete system retuning. Functional components 
are so dispersed that to understand any single component requires knowledge of 
the entire system. The structure of the software has been totally lost and 
maintenance efforts can only degrade thn structure further. Finally, one has 
a system in need of constant and expensive maintenance. 

In order to reduce the cost of this type of system, the creation of the 
cyclic structure must be separated from the cleation and maintenance of the 
software components. Modern software engineering techniques can be applied to 
the system development and maintenance issues, with an extra step added to 
derive a cyclic implementation from a more general design. The code developed 
would be structured according to functional rather than timing considerations. 
The timing of the system would move from the detailed design and coding steps 
into a new precompilation step. 

This extra step might be implemented as a machine-assisted (programmer 
directed) set of program transformations which parallel the cyclic design 
process that would normally take place during the software design. The 
transformational sequence as well as the the untransformed source would be 
save for future rederivations after necessary program maintenance is 
performed. 

A tool assisted tuning system need not be limited to cyclic 
transformations. While there may always be a class of real time systems 
requiring cyclic runtime performance, there is an equally large number of 
systems that do not require such extreme measures. Many of these systems 
would benefit from the flexibility of an Ada style runtime scheduler. This 
type of scheduling allows more flexibility in dealing with runtime loadinq 
variations, and is far more robust when maintenance changes are made. These 
systems still require tuning, although not to the same extent. For these 
systems, other types of tuning transformations can be made available, such as 
replacing monitor tasks with semaphores OK simplifying groups of tasks using 
program inversion techniques [31. By applying these techniques, a system can 
be tuned until the appropriate level of predictability and efficiency has been 
reached, 
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Conclusion 

There will always bo system that have a need for the runtime performance 
Of cyclic scheduling. Many of the cyclic scheduling models Lit well within 
the Ada language. In order for  the cost of a cyclic system to be brought 
under control, new methods aurt be developed to for their creation. These 
methods ought not be limited to tho creation of cyclic systems; however, they 
should provide a more general approach to the development of real time 
systemsr with cyclic scheduling as one of many options €or achieving real time 
performance. 
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Choosing a so f tware  des ign  method f o r  r e a l - t i m e  Ada a p p l i c a t i o n s :  
J S D  Process I n v e r s i o n  as a means t o  t a i l o r  a des ign  s p e c i f i c a t i o n  
to the performance requ i rements  and t a r g e t  machine. 

James V. Withey, I n t a r m e t r i c s ,  Lnc. $' p*- 

A b s t r a c t  

The v a l i d i t y  of r e a l - t i m e  so f tware  is determined by  i t s  a b i l i t y  
t o  execute on a computer w i th in  t h e  t i m e  c o n s t r a i n t s  of t h e  
p h y s i c a l  system i t  is modeling. I n  many a p p l i c a t i o n s  t h e  t i m e  
e o n s t r a i n t o  a r e  so c r i t i c a l  t h a t  t h e  d e t a i l s  of process 
schedu l i ng  a r c  e leva ted  t o  t h e  requ i rements  a n a l y s i s  phase of t h e  
so f tware  development cyc le .  I t  is n o t  uncommon t o  f i r i d  
s p e c i f i c a t i o n s  fur a r e a l - t i m e  c y c l i c  e x e c u t i v e  program i n c l u d e d  
o r  assumed i n  such requi rements.  We have found t h a t  p r e l  iminar:; 
des igns  s t r u c t u r e d  around t h i s  imp lementa t ion  obscure the d a t a  
f l o w  of t h e  r e a l  wor ld  system t h a t  w e  are  model ing and t h a t  :it: i r  
consequent ly  d i f f i c u l t  and  c o s t l y  t o  ma in ta in ,  update and rpiise 
t h e  r e s u l t i n g  so f tware .  

r 

J 

A c y c l i c  e x e c u t i v e  is a so f tware  component t h a t  ~ c h e d c t l e ~ \  ar\c' 
-- i m e l i r i t l y  ------- synchronizes t h e  r e a l - t i m e  so f tware  th rough p e r i o c ! ~  
and r e p e t i t i v e  s jubrout ine c a l l s .  I t  guarantees a cons is ten t  
p rocess ing  r a t e  h u t  not  tiomogcneaus data. Ada taski nq on t h i ?  
o t h e r  hand, can a s r s u r a  t h e  cons is tency  o f  t h e  d a t a  but n o t  a 
s t a b l e  E'i:E!c:c\tiori frequency. Each scheclcrling par-,adigm has i t .  
d i s a d v a n t a g ~ s :  
e:.: @cut  i ve , -i i t te r -  and nondet er-mi n i sm for- Ada t a~il;: i ng . race-condi  t i o n s  and ma in ta inab i  1 i t y  f o r  the c.;.'c: 1 :  : 

We t h e r e f o r e  seek a des iyn  method t h a t  a l l o w s  t h e  d e . f e r r a 1  i ) t  

p r o c ~ s s  schedul i rig t o  t l ie 1 a t e r  s tages o f  T h e  cieci i  gI\;.i!r. 
m u s t  be a b l e  t o  chose t h e  a p p r o p r i a t e  schedul i r rg  paradigm IJ t ','P:I 

t.he pcirfnrtnancts const:r-ai n t s ,  t h e  target: env i  ronmcnt and the 
s o f t w a r e ' s  l i f e c y c l e .  Ada des ign  nrrthnds mLlst, i n  nrder  t ~ l  

si.\ppor-t t h e  t a s k i n g  fcatr.wes o f  Ada, i n i t i a l l y  s p e c i f y  t h e  
s o f t w a r e  des ign  a3 a s e t  o f  i n te rconnec ted  c o n c L l r r e n t  SeqL(erit. t ~ { l  
processes. They shoi-lld a1 50 p r o v i d e  a v e r i  f i ab1 e t rans formdt  1 LJII 

t h a t  a l l o c a t e s  t h i s  design s p e c i f i c a t . i o n  t o  rnndulss based mri  

el, t,her- a par- j .odic o r  ever i t -dr iven schedu l ing  par-adiym. 

des i  yn. 
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IHPLEHBNTATION OF AN ADA* REAL-TIUE EXECUTIVE - A CASE STUDY 

James 0. Laird 
Dt. Bruce A. Burton 

nary R. Koppes 

Intermetrice, Inc. 
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5312 Boles Avenue 
Huntington Beach, California 92649 

ABSTRACT 
C u r r e n t  Ada  l a n g u a g e  

i m p l e m e n t a t i o n s  a n d  r u n t i m e  
e n v i r o n m e n t s  a r e  i m m a t u r e ,  
u n p r o v e n  and  a r e  a key  r i s k  
a r e a  f o r  rea l - t ime embedded 
c o m p u t e r  sys t ems  (ECS). T h i s  
s t u d y  p r o v i d e s  a t e s t - c a s e  
e n v i r o n m e n t  i n  w h i c h  t h e  
c o n c e r n s  of t h e  r e a l - t i m e ,  ECS 
c o m m u n i t y  a r e  a d d r e s s e d .  A 
p r i o r i t y  d r i v e n  execut ive  is 
s e l e c t e d  t o  be implemented i n  
t h e  Ada programming l anguage .  
T h e  m o d e l  s e l e c t e d  i s  
r e p r e s e n t a t i v e  of r e a l - t i m e  
e x e c u t i v e s  t a i l o r e d  f o r  
e m b e d d e d  s y s t e m s  u s e d  i n  
m i s s i l e ,  s p a c e c r a f t ,  a n d  
a v i o n i c s  a p p l i c a t i o n s .  An 
Ada-based  d e s i g n  methodology 
is u t i l i z e d ,  and  two d e s i g n s  
a r e  c o n s i d e r e d .  T h e  f i r s t  of 
these d e s i g n s  r e q u i r e s  t h e  use 
of vendor  s u p p l i e d  runt ime and 
t a s k i n g  s u p p o r t .  An a l t e r n a t -  
i v e  h i g h - l e v e l  d e s i g n  is a l s o  
c o n s i d e r e d  f o r  an implementa t -  
i o n  r e q u i r i n g  n o  v e n d o r  
s u p p l i e d  run t ime  o r  t a s k i n g  
s u p p o r t .  The former  approach  
i s  c a r r i e d  t h r o u g h  t o  impleme- 
n t a t i o n .  

A d a  i s  a R e g i s t e r e d  
Trademark  of t h e  U.S. Govern- 
ment ( A J P O )  

* 

S i n c e  t h e  i n c e p t i o n  of 
t h e  common DoD H i g h  O r d e r  
L a n g u a g e  ( H O L )  e f f o r t  i n  t h c  
m i d - 7 0 1 s ,  t h e  Ada programming 
l a n g u a g e  h a s  r e m a i n e d  ir 
c o r n e r s t o n e  of t h e  government 
e f f o r t  a t  p r o d u c i n g  sof t w d t  c‘ 

i n  a c o s t - e f f e c t i v e  m a n n c i .  
V a l i d a t e d  Ada c o m p i l e r s  a r e  
b e c o m i n g  a v a i l a b l e  o n  J 

va r i e  t y  of d i  f f e  r e n t  conipu t t‘ 1 :> 
w i t h  a t  l e a s t  1 7  v a l i d a t e d  
c o m p i l e r s  now a v a i l a b l e  a n d  
m o r e  s l a t e d  f o r  v a l i d a t i o n  
d u r i n g  t h e  c u r r e n t  Y C J I .  
T h e r e  a r e  c u r r e n t l } .  3 7  
d i f f e r e n t  a , - f e n s e  ~ L O C J K J ~ I ~ ,  
u s i n g  Ada, and this number 1 2  
a n t i c i p a t e d  t o  e x c e e d  1 7 0  
d u r i n g  t h e  n e x t  fou r  y c ~ ~ s  . 
W h i l e  t h i s  p r o g r e s : ,  I .  
e n c o u r a g i n g ,  t h e  s u c c e s s  ( 1 1  

t h e  Ada l a n g u a g e  i n  mect I I I ~ I  
t h e  n e e d s  of s p e c i f i c  appl  ii-Ll-- 

t i o n s  w i l l  h i n g e  o n  t t , t  

c o n s i d e r a t i o n  of t h e  p o t e n t  i , t I  
r i s k s  t h a t  f a c e  t h e  i r i ip1c111~11- 
t o r s  of  a g i v e n  system. 

1 

T h i s  p r o c e s s  of r i s k  i d e n t i f i -  
c a t i o n  s h o u l d  be f o l l o w e d  L y  
d e v e l o p m e n t  of  r i s k  m i n i n i i -  
z a t i o n  a n d  a v o i d a n c e  s t r a t c -  
g i e s  t a i l o r e d  t o  m e e t  t h e  
n e e d s  of t h e  s y s t e m .  T h e  
e m p h a s i s  o f  t h i s  pape r  i F  iri 
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t h e  a r e a  . o f  t e c h n i c a l  r i s k  
i d e n t i f i c a t i o n  and r e s o l u t i o n  
f o r  r e a l - t i m e  E C S  
a p p l i c a t i o n s .  W h i l e  t h e  Ada 
p r o g r a m m i n g  l a n g u a g e  i s  
i n t e n d e d  f o r  r e a l - t i m e  
a p p l i c a t i o n s ,  c u r r e n t  compi l -  
e r s  a n d  r u n t i m e  systems a r e  
u n p r o v e n  f o r  t h e s e  t y p e s  o f  
p r o g r a m m i n g  e f f o r t s .  
C o n s e q u e n t l y ,  t h e  impact  and 
i m p l i c a t i o n s  of  u s i n g  t h e  Ada 
l a n g u a g e  a n d  A d a - o r i e n t e d  
m e t h o d o l o g i e s  i n  e m b e d d e d  
r e a l - t i m e  development  e f f o r t s  
s h o u l d  b e  a s s e s s e d .  While i t  
is n e c e s s a r y  t o  examine how 
wel l  a n d  t o  wha t  e x t e n t  t h e  
b u i l t - i n  real-time f e a t u r e s  of 
t h e  l a n g u a g e  meet t h e  n e e d s  of 
E C S  a p p l i c a t i o n s ,  
a d d i t i o n a l l y ,  we m u s t  r e - e v a l -  
u a t e  t h e  s t a n d a r d  approaches  
t o  s o l v i n g  r e a l - t i m e  problems 
i n  l i g h t  of  t h e  new c a p a b i l i -  
t i e s  and assess t h e  impac t ,  i f  
a n y ,  on t h e  way w e  d e s i g n  and 
i m p l e m e n t  t h e s e  s o l u t i o n s  i n  
s o f t w a r e .  

P e r h a p s  t h e  m a j o r  
c o n s i d e r a t i o n  w i t h  r e g a r d  t o  
the use of t h e  Ada programming 
l a n g u a g e  f o r  r e a l - t i m e  ECS 
a p p l i c a t i o n s  is t h e  cos t  o f  
d o i n g  so  i n  t e r m s  of memory 
dnd p r o c e s s i n g  ove rhead .  T h e  
r e l a t i v e  c o s t s  a s s o c i a t e d  w i t h  
t h e  u s e  o f  A d a  a n d  i t s  
r e a l - t i m e  f e a t u r e s  is espe -  
c l a l l y  r e l e v a n t  t o  s m a l l  
r! 111 b e d d e d  compu t e r s y s  t em 
< 1 p p 1  i c a t i o n s  g i v e n  t h e  
p h y s i c a l  a n d  t e m p o r a l  con- 
s t r a i n t s  i m p o s e d  on t h e s e  
t y p e s  o f  a p p l i c a t i o n s .  T h e  
c l c t c r m i n i n g  f a c t o r  i n  t h e  
O ( t c i s i o n  t o  u t i l i z e  a p a r t i -  
c u l a r  h i g h  o r d e r  l a n g u a g e  
( i ! O I , )  f e a t u r e  is o f t e n  t h e  

e f f i c i e n c y  o f  i t s  implemen-  
t a t i o n .  I t  is i m p o r t a n t  t o  
know wha t  t h e  u t i l i z a t i o n  of 
Ada w i t h  i t s  r e a l - t i m e  t a s k i n g  
p r i m i t i v e s ,  r e p r e s e n t a t i o n  
s p e c i f i c a t i o n s ,  e x c e p t i o n  
h a n d l i n g ,  a n d  v a r i o u s  o t h e r  
f e a t u r e s  t r a n s l a t e s  t o  i n  
t e r m s  of program s i z e ,  s p e e d ,  
a n d  e f f i c i e n c y .  T h e  a b i l i t y  
t o  s e l e c t i v e l y  i n c l u d e  r u n t i m e  
s u p p o r t  a n d  i t s  r e s u l t a n t  
ove rhead  f o r  these f e a t u r e s  an 
a n  ' a s  n e e d e d "  b a s i s  i s  
a n o t h e r  i m p o r t a n t  c o n s i d e r -  
a t i o n .  D u r i n g  t h e  c o u r s e  of 
t h i s  i n v e s t i g a t i o n ,  answers  t o  
f u n d a m e n t a l  q u e s t i o n s  s u c h  a s  
t h e s e  were s o u g h t .  

I t  i s  i m p o r t a n t  t o  s t r e s s  
t h e  s i g n i f i c a n t  c o n c e p t u a l  
d i f f e r e n c e s  between t h c  two 
a p p r o a c h e s  invest i g a t e d  w i t h  
r e g a r d  t o  t h i s  c a s e  s t . u d y  
i m p l e m e n t a t i o n  o f  a p r i o r i t y  
d r i v e n  Ada e x e c u t i v e .  F i q u r e  
1 s e r v e s  t o  i l l u s t r a t e  t h e  
a l t e r n a t i v e  a p p r o a c h e s  a n d  
c o n c e p t s  and  t h e i r  i m p l i c a -  
t i o n s  f o r  t h e  d e v e l o p e r  of a n  
Ada executive.  

T h e  t e r m s  O.S., execu-  
t i v e ,  and  r u n t i m e  s u p p o r t  o r  
s y s t e m  ( R T S )  a r e  o f t e n  u s e t i  
r a t h e r  l o o s e l y  when E C S  t o p i c s  
a r e  d i s c u s s e d .  T h e  ambigu i ty  
of t h i s  t e r m i n o l o g y  i n  t h e  ECS 
e n v i r o n m e n t  is p r i m a r i l y  d u e  
t o  t h e  o v e r l a p  i n  f u n c t i u n -  
a l i t y  p r o v i d e d  by  d i f f e r e n t  
i m p l e m e n t a t i o n s  f o r  d i f  f e r c n t  
a p p l i c a t i o n s .  A n  a p p l i c a t i o n  
r e s i d i n g  on a b a r e  machine may 
i n t e r f a c e  w i t h  s o f t w a r e  
p r o v i d i n g  m i n i m a l  e c h e d u l i n g  
a n d  memory mnnagement.  This 
s o f t w a r e  is o f t e n  r e f e r r e d  t o  
a 5  an "executive" o r  run t ime  
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FIGURE 1 
RUNTIME SUPPORT (RTS)  
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k e r n e l  w h e r e a s  t h e  s a m e  
s e r v i c e s  p r o v i d e d  on a n o t h e r  
s y s t e m  may be  o b t a i n e d  f rom 
s o f t w a r e  r e f e r r e d  t o  a s  a n  
O.S. T h e  p r i m a r y  d i f f e r e n c e  
i n  t e rmino logy  is a t t r i b u t a b l e  
t o  t h e  v a r i e t y  and n a t u r e  of 
t h e  s e r v i c e s  p r o v i d e d  by t h e  
s u p p o r t  s o f t w a r e  i n  q u e s t i o n .  
T h e  more m i n i m a l  t h e  R e r v i c e s  
p r o v i d e d ,  t h e  more l i k e l y  t h a t  
t h e  t e r m s  r u n t i m e  s u p p o r t ,  
r u n t i m e  k e r n e l  , o r  execut ive 
w i l l  b e  a p p l i e d .  T r u e  
o p e r a t i n g  s y s t e m s  i n  t h e  
s t r i c t  sense a r e  d i s t i n g u i s h e d  
by two m a j o r  f a c t o r s .  T h e y  
a r e  t y p i c a l l y  d e v e l o p e d  
i n d e p e n d e n t l y  of a n y  c o m p i l e r -  
/ a p p l i c a t i o n s  s o f t w a r e  and a r e  
a c q u i r e d  i n d e p e n d e n t l y  r a t h e r  
t h a n  a s  a p a r t  o f  il g i v e n  
c o m p i l e r  sys tem o r  p a c k a g e .  

The o t h e r  major  d i s t i n c t i o n  is 
i n  t h e  c o m p r e h e n s i v e n e s s  o f  
t h e  s e r v i c e s  p r o v i d e d  by a n  
O . S .  f o r  t h e  t a r g e t  machine ;  
s e r v i c e s  t h a t  may be t a r g e t e d  
a n d  u t i l i z e d  by a v a r i e t y  of 
d i f f e r i n g  a p p l i c a t i o n s  a n d  
t o o l s  a s  wel l  a s  many d i f f -  
e r e n t  c o m p i l e r  s y s t e m s .  T h e  
m i n i m a l  r u n t i m e  s u p p o r t  f o r  
a p p l i c a t i o n s  deve loped  under  il 
s i n g l e  c o m p i l e r  s y s t e m  ma;' 
i n t e r f a c e  t o ,  and u t i l i z e ,  ttre 
c o m p r e h e n s i v e  s e r  v i C C L  

p r o v i d e d  by a n  0,s. Ther l : -  
f o r e ,  t h e  RTS €or an ECS C A I )  
be t h o u g h t  of as p r o v i d i n q  til<* 
m i n i m a l  r e q u i r e d  s u b s e t  I . ) ! .  

0,s. s e r v i c e s  n e e d e d  f o r  .I 

g i v e n  a p p l i c a t i o n .  A S  s t i l t ec! ,  
t h i s  m i n i m a l  s u b s e t  c a n  til' 
prov ided  by d i r e c t  a c c e s s  t (.) 

t h e  u n d e r l y i n g  m a c h i n e  U I  

t h r o u g h  t h e  u t i l i z a t i o n  of t t t r ,  
s e r v i c e s  p r o v i d e d  b y  ~ I I  

u n d e r l y i n c j  comprehens ive  0 . 5 .  
The f o r m e r  c a s e  is t h e  m u s t  
t y p i c a l  f o r  embedded cornputc  I 

s y s t e m s .  The t e r m  "execu t  ivt:" 
i s  most o f t e n  used  t o  r e f t r  t o  
t h a t  p a r t  o f  t h e  HTS t i 1 , 1 1  
p e r f o r m s  t h e  b a s i c  s chedu l  I I!$; 

and memory management. ilt: t l q : !  

p o r t  i o n s  o f  t h e  R T S  I I I ~ I ' :  

i n c l u d e  1/0 c o n t r o l ,  t i m e [ , ' -  
c l o c k  m a n a g e m e n t ,  a n d  , I  
c e r t a i n  a m o u n t  o f  s y s t ~ :  
l e v e l  r u n t i m e  e r r o L  , I I : ( ~  

i 11 t e r r up t  t r a p p i  n y  . 
T h e  R T S  o f  a n  I t .  

s u p p o r t s  t h e  e x e c u t  l o t 1  I I 
a p p l i c a t i o n  p r o g r a m s  and  I tit. 
programming language  f e a t  U I  I . :  
u t i l i z e d  t o  d e v e l o p  ~ I ~ L J . , I  

p r o g r a m s .  As i l l u s t r a t 1 , t l  1 1 1  

F i a u r e  1, t h i s  s u p p o r t  c a n  l J <  
i m p l e m e n t e d  i n  h a r d w a r t . ,  
m i c r o c o d e ,  t h r o u a h  d i t t : ( . t  
c a l l 8  t o  an  O.S., t h rouqh  t i l l -  
u s e  o f  r u n t i m e  B U ~ P O I  I 
l i b r a r i e s ,  o r  b y  cornp1 I l . ~  
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g e n e r a t e d  ( i n - l i n e )  code .  The 
o p e r a t i n g  sys t em and RTS n e e d s  
o f  s m a l l  e m b e d d e d  computer 
s y s t e m s  a re  t y p i c a l l y  modest.  
A l l  t h a t  s u c h  a m a l l  ECS 
t a r g e t s  u s u a l l y  require is cn 
" e x e c u t i v e "  c o n s i s t i n g  of 
l i t t l e  m o r e  t h a n  a b a s i c  
s c h e d u l e r ,  memory manager and 
some t y p e  o f  I / O  manage r  o r  
c o n t r o l l e r .  O b v i o u s l y ,  
d i f f e r e n t  a p p l i c a t i o n s  may 
h a v e  s p e c i f i c  n e e d s  r e l a t i v e  
t o  memory management, I/O, o r  
c l o c k  s e r v i c e s  wkich w i l l  be 
r e f l e c t e d  i n  t h e  " e x e c u t i v e / -  
0 . S "  s o f t w a r e .  

APPROACB 
T h i s  pape r  a d d r e s s e s  two 

basic  o p t i o n s  o r  approaches  t o  
t h e  i m p l e m e n t a t i o n  of an  Ada 
e x e c u t i v e  and b r i e f l y  d i s c u s -  
s e s  o n g o i n g  a s  w e l l  a s  
p roposed  work i n  a t h i r d  a r e a  
of r e l a t e d  i n v e s t i g a t i o n .  T h e  
f i r s t  o f  t h e s e  a p p r o a c h e s  is 
e x p l c r e d  i n  d e p t h  ( t h r o u g h  t o  
i m p l e m e n t a t i o n )  a n d  c o n s i s t s  
Jf a combina t ion  of a "pseudo 
e x e c u t i v e "  o r  s c h e d u l e r  a t  t h e  
a p p l i c a t i o n s  l a y e r  i n  c o n c e r t  
w i t h  vendor  s u p p l i e d  e x e c u t i v e  
s o f t w a r e  a t  t h e  run t ime  s y s t e m  
l e v e l .  T h e  o b v i o u s  b e n e f i t s  o t  
such  a n  approach  - i m p o s i n g  an  
a d d i t i o n a l  l a y e r  of  c o n t r o l  
u p o n  t h e  r u n t i m e  s y s t e m  
s c h e d u l i n q  mechanism - i n c l u d e  
e a s e  o f  p o r t a b i l i t y ,  a n d  
r e l a t i v e  t a r g e t  i ndependence  
w i t h  r e s p e c t  t o  t h e  u n d e r l y i n g  
: i c h e d u l i n g  a l g o r i t h m  a t  t h e  
N'rS layer. T h e s e  b e n e f i t s  as 
w r : l l  a s  t h e  t r a d e o f f s  i n  
o ~ ( : r h e a d  and consis tency from 
~ m p l c r n c n t a t i o n  t o  implemen- 
t , l t i o n  w i l l  be d i s c u s s e d  i n  

T h e  s e c o n d  o p t i o n  is 
e x p l o r e d  a t  a h i g h  l e v e l  
o n l y .  T h i s  a l t e r n a t i v e ,  
t e r m e d  t h e  b a r e  m a c h i n e  
a p p r o a c h ,  i s  cons i s t en t  w i t h  
t h e  t r a d i t i o n a l  a p p r o a c h  t o  
a v i o n i c s - b a s e d  e x e c u t i v e s  and 
is c o n s i d e r a b l y  mote l i m i t e d  
i n  scope t h a n  t h e  f i r s t  i n  t h e  
s e n s e  t h a t  i t  a s s u m e s  rio 
u n d e r l y i n g  v e n d o r  s u p p l  i e d  
r r n t i m e  s u p p o r t .  T h i s  
e x e c u t i v e  p e r f o r m s  a l l  
n e c e s s a r y  s u p p o r t  f o r  t h e  
e x e c u t i o n  o f  u s e r  j o b s  o r  
" t a s k s n .  ! ? o w e v e r ,  t h i p  
approach  is s i g n i f i c a n t l y  morL 
r e s t r i c t i v e  t h a n  t h e  f i r s t  
w i t h  r e s p e c t  t o  t h e  n a t u r e  o f  
what  c o n s t i t u t e s  a " t a sk"  a s  
well a s  t o  t h e  use of c e r t a i n  
Ada l a n g u a g e  f e a t u r e s  i n \  91- 
v i n g  b o t h  t h e  Ada t a s k i n g  
m o d e l  a n d  d y n a m i c  m e m o r y  
management  a n d  c e r t a i n  o t h e r  
r e a l - t i m e  a s p e c t s  o f  t h e  
l anguage .  

T h e  t h i r d  o p t i o n  i s  
c o n s i d e r e d  o n l y  i n  t e r m s  c f  
c u r r e n t  and  o n g o i n g  i n v e s t i -  
g a t i v e  w o r k  a n d  p r o p o s e d  
f u t u r e  s t u d i e s  based upon t h e  
r e s u l t s  o f  p a s t  i n v e s t i -  
g a t i o n s .  T h i s  a p p r o a c h  
d i v e r g e s  f rom t n e  o t h e r s  i n  
t h a t  i t  p r o p o s e s  a m i g r a t i o n  
t o  t h e  run t ime  s y s t e m  l a y e r  i n  
o r d e r  t o  p r o b e  t h e  issues of 
e f f i c i e n c y  and c i s k  r e d u c t  i on  
f o r  r e a l - t i m e  Ada a p p l i c a -  
t i o n s .  T h i s  o p t i o n  emphas izes  
t h e  t a i l o r i n g  and o p t i m i z a t i o n  
of  t h e  e x e c u t i v e  f u n c t i o n s  
p r o v i d e d  a t  t h e  RTS l a y e r .  

A m u l t i - p h a s e d  a p p r o a c h  
b e g i n n i n g  w i t h  a r e q u i r e m e n t s  
s p e c i f i c a t i o n  was u t i l i z e d  f O K  
t h e  d e s i g n  and development  of 
t h e  p r i o r i t y  d r i v e n  execu-  
t i v e .  The  f u n c t i o n a l  c a p a b i l -  
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i t i e s  t h a t ’ w e r e  t o  be p r o v i d e d  
w e r e  e x t r a c t e d  f r o m  a n  
e x i s t i n g  a v i o n i c s  execut ive  
implemented i n  a c o m b i n a t i o n  
of F O R T R A N  a n d  A s s e m b l y  
l a n g u a g e .  I t  was d e t e r m i n e d  
t h a t  t h e s e  Barn6 f u n c t i o n a l  
c a p a b i l i t i e s  would be p r o v i d e d  
w i t h i n  t h e  e x e c u t i v e  b e i n g  
i m p l e m e n t e d  i n  t h e  A d a  
l a n g u a g e .  

W h i l e  p r o v i d i n g  s u b s t a n -  
t i a l l y  t h e  same f u n c t i o n a l i t y ,  
t h e  Ada e q u i v a l e n t  c o n s t i t u t e d  
a c o m p l e t e  r e -des iqn  u t i l i z i n g  
Ada  c o n c e p t s  a n d  f e a t u r e s  
w h e r e  p o s s i b l e .  For t h i s  
r e a s o n ,  t h e  Ada e x e c u t i v e  
p o s e d  some u n i q u e  p r o b l e m s  
from t h e  o u t s e t  w i t h  respect 
t o  use of t h e  new Ada c o n c e p t s  
a n d  f e a t u r e s  s u c h  as t h e  Ada 
t a s k i n g  m o d e l .  T h e s e  issues 
a r e  a d d r e s s e d  i n  t h e  RESULTS 
s e c t i o n  of t h i s  p a p e r .  

T h e  Ada p r i o r i t y  d r i v e n  
e x e c u t i v e  w a s  t o  p r o v i d e  
f a c i l i t i e s  f o r  t h e  c r e a t i o n  of 
a c t i v e  t a s k s  v i a  a s c h e d u l i n g  
m e c h a n i s m .  T h e  s c h e d u l i n g  
m e c h a n i s m  w o u l d  p r o v i d e  
t i me - d e p e n d e n t  s c h e d u l i n g  
c a p a b i l i t i e s ,  p r e c i s i o n  t i m i n g  
of t a s k  a c t i v a t i o n  as  measured 
b y  t ime b a s e  g e n e r a t e d  (TBG)  
e p o c h s ,  a n d  s i g n a l  dependent  
s c  h e d u  1 i n g  capa b i  1 i t  i e s  . T h e  
Ada p r i o r i t y  d r i v e n  e x e c u t i v e  
w o u l d  p e r f o r m  p r i o r i t i z e d  
t a s k i n g  a n d  would  h a v e  t h e  
o p t  i o n  o f  e n a b l i n q  a n d  
d i s a b l i n q  i n t e r r u p t s .  T h e  
. a p a b i l i t y  t o  d i r e c t l y  c o n n e c t  
t o  a r e a l - t i m e  c l o c k  i n t e r r u p t  
w o u l d  be p r o v i d e d .  I n  t h e  
a b s e n c e  of s u c h  a f a c i l i t y ,  
t h e  r e a l - t i m e  c l o c k  i n t e r r u p t  
would  be s i m u l a t e d  w i t h  t h c  
s m a l l e s t  g r a n u l a r i t y  p o s -  
s i b l e .  I n  s h o r t ,  t h e  Ada 

p r i o r i t y  d r i v e n  executive was 
r e q u i r e d  t o  be a r e a l - t i m e ,  
m u 1  t i - t a s k i n g  p r o c e s s  manager 
w i t h  i n t e r r u p t  h a n d l i n g  a n d  
b o t h  c y c l i c  a n d  a s y n c h r o n o u s  
s c h e d u l i n g  c a p a b i l i t y .  

I n t e g r a l  t o  t h e  d e s i g n  of 
t h e  A d a  p r i o r i t y  d r i v e n  
e x e c u t i v e  was t h e  s e l e c t i o n  
and a p p l i c a t i o n  of a s t a t e - o f -  
- t h e - a r t ,  A d a - b a s e d  d e s i g n  
methodology.  A somewhat n o v e l  
d e s i g n  a p p r o a c h  was s e l e c t e d  
t h a t  was  b a s e  upon O b j e c t  
O r i e n t e d  De6ignB w i t h  enhance -  
m e n t s  a n d  m o d i f i c a t i o n s  
s p e c i f i c  f o r  r e a l - t i m e  
e m b e d d e d  s y s t e m s 4 .  T h e  
methodology d e r i v e d  was termed 
R e a l - T i m e  O b j e c t  O r i e n t e d  
D e s i g n  ( R T O O D )  and drew upon 
a n o  t h e  r r e a  1 - t ime , s y s  t enis - 
- b a s e d  d e s i g n  m e t h o d o l o g y  
c a l l e d  D e s i g n  A p p r o a c h  
Real-Time S y s t e m s  (DARTS) . 
T h e  s t e p s  u t i l i z e d  i n  this 
h y b r i d  m e t h o d o l o g y  a r c  
o u t l i n e d  j i  F i g u r e  2 .  
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Similarly, a high level 
design was developed for the 
alternate approach - termed 
h e r e  * t h e  b a r e  m a c h i n e  
approach* - t o  the development 
o f  a n  A d a  executive. T h e  
"bare machine" model imple- 
m e n t s  i t s  o w n  c o n c u r r e n c y  
through the executive while 
disallowinq the use of the Ada 
tasking model per se as well 
as any difficult, and poten- 
t i a l l y  risk-prone, dynamic 
s t o r a g e  m a n a g e m e n t .  T h e  
potential benefits and risks 
of each of these approaches 
was examined with the former 
approach being carried through 
to implementation and limited 
utilization. 

RESLlLTS 
L A D A  EX ECUTIVE WITB VENDOR 0 RUNTIHE S O P P O ~  

T h e  capabilities of the 
F O  R'I'RA N/A s s e m b l  y 1 a n g  ua g e 
i m p l e m e n t a t i o n  and the Ada 
language implementation are 
summarized in Table 1. The 
Ada language version consists 
cf two major components - the 
p r o g r a m  code a n d  t h e  v e n d o r  
supplied runtime system. In 
b o t h  i m p l e m e n t a t i o n s  t h e  
s c h e d u l i n g  p r i m i t i v e s  a r e  
I J r O v  ided by the executive, but 
t h e  ultimate responsibility 
f o r  c y c l i c / a c y c l i c  t a s k  
~cheduling lies with the user 
(application) tasks. Note, 
h o w e v e r ,  t h a t  t h e  t a s k  
interleaving and task waiting 
l n  t5e Ada language version is 
strictly under the control of 
the Ada runtime system and not 
~ n d e r  t h e  c o n t r o l  of t h e  
cxccutive as in the FORTRAN/-  
A S  I; e m  bl y i m p l  e m e n  t a t i o n .  
Furthermore, although tasking 
could be prioritized dynam- 

i c a l l y  ( c h a n g e d )  i n  t h e  
P O R T R A N / A a s e m b l y  implemen- 
t a t i o n ,  p r i o r i t i e s  a t  t h e  
r u n t i m e  s y s t e m  l e v e l  a r e  
s t a t i c  in t h e  Ada language 
version. - 
P i q u r e  3 d e p i c t s  the major 
functional components of the 
A d a  e q u i v a l e n t  p r o t o t y p e  
developed for the case study 
i n v e s t i g a t i o n .  T h e  m a j o r  
distinction between the Ada 
implementation and the 
F O R T R A N / A s s e m b l y  m o d e l  
depicted in Figure 4 involves 
t h e  interaction of the Ada 
r u n t i m e  s y s t e m  w i t h  t h e  
p r i o r i t y  d r i v e n  e x e c u t i v e  
functions. 

I - I- m- I,, 

W h  i le the FORTRAN/Asse,d- 
b l y  model managed a l l  state 
t r a n s i t i o n s  for user tasks 
from inactive to executing a n d  
all information associated 
with these state transit ions, 
t h e  A d a  i m p l e m e n t a t i o n  
u t i l i z e s  t h e  A d a  r u n t i m e  
s u p p o r t  s y s t e m  ( f o r  t h e  
tasking model) to manage the 
active processing phase of any 
user task as well as the body 
of information associated with 
a tasks' a c t i v e  executian. 
Specifically, the Ada runtime 
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F I G U R E  3 
ADA P R I O R I T Y  DRIVEN 

EXECUTIVE FUNCTIONAL 
SCHEMATIC 

s y s t e m  m a n a g e s  t h e  i n t - r -  
l e a v i n g  o r  t i m e - s l i c i n g  o f  
c o n c u r r e n t l y  e x e c u t i n g  u s e r  
t a s k s  a n d  is r e s p o n s i b l e  f o r  
management  of t h e  a s s o c i a t e d  
t a s k  a c t i v a t i o n  i n f o r m a t i o n .  
The s t a r t  of  a u s e r  t a s k s '  
s c h e d u l e d  e x e c u t i o n  phase is 
s t r i c t l y  under  t h e  c o n t r o l  of 
t h e  A d a  p r i o r i t y  d r i v e n  
e x e c u t i v e  a t  t h e  a p p l i c a t i o n s  
l a y e r ,  y e t ,  t h e  management of 
t h e  t r a n s f e r  o f  c o n t r o l  
b e t w e e n  any  number of concur -  
r e n t l y  e x e c u t i n g  u s e r  t a s k s  i s  
b y  d e f i n i t i o n  u n d e r  t h e  
c o n t r o l  of t h e  vendor  s u p p l i e d  
Ada run t ime  sys tem.  

T o  s a t i s f y  t h e  r e q u i r e -  
ment f o r  a cyc l i c  c a p a b i l i t y ,  
t h e  e x e c u t i v e  was r e q u i r e d  t o  
have some methQd f o r  s p e c i f y -  
i n g  f i x e d - r a t e  s c h e d u l i n g .  
T h i s  w a s  p r o v i d e d  o n  t w o  
l e v e l s .  I n  k e e p i n g  w i t h  t h e  
s c h e m e  u t i l i z e d  i n  t h e  
o r i g i n a l  m o d e l ,  t h e  f a c i l i t y  
f o r  s c h e d u l i n g  a t a s k  f o r  
e x e c u t i o n  i s  p r o v i d e d .  A c t i v e  

FIGURE 4 

EXECUTIVE Fr 'YCTIONAL 
FORTRA N/AS SEMBLY 

SCHEMA1 I C  

t a s k s  c u r r e n t l y  e x e c u t i n u  mcl;,' 

t h e r e f o r e  u t i l i z e  t h 1 s 
f a c i l i t y  t o  r e - i n s e r t  t h e n -  
s e l v e s  i n t o  t h e  s c h e d u l e  f o r  
f u t u r e  e x e c u t i o n ,  o r  t h i s  n l ~ l '  

be d o n e  by some o t h e r  a c : t 1 j S c  
user t a s k .  

I n  t h e  o r i g i n a l  model ~l 

v o l u n t a r y ,  n o n  p r e - e m p t i - c  
s c h e d u l i n g  scheme was u t i l i z e d  
among  t h e  u s e r  t a s k s  t h i i t  
e n f o r c e d  t h e  n o t i o n  t h a t  
t r a n s f e r  of c o n t r o l  o r  c o n t e x t  
s w i t c h i n g  among t a s k s  C C I : ; ! , I  
o c c u r  u n e x p e c t e d l y .  B c ~ t  1 1 ) ~ ;  

i n  m i n d  t h a t  h i t h i n  a i )  i t i i . 1  

e n v i r o n m e n t  t h e  u n d e r l )  1 '  I 
o p e r a t i n g  o r  r u n t i m e  s) : ; t t  
u t i l i z e s  a n o t h e r  l e v c l  I 

s c h e d u l i n g  f o r  t h e  i n t t : t  
l e a v i n g  of  c u r r e n t l y  ; I L . C I  , \  

t a s k s ,  a t a s k  p c i o r i t i z d t ~ ~ ~ l l  
scheme among t h e s e  tasks I . ,  
t h e n  r e q u i r e d  t o  e n f o r c e  t 
n o t i o n  t h a t  a p a r t i c u l a r  t I l : ,h 

is i n c a p a b l e  of  h a v i n q  l t : ;  
s c h e d u l e d  e x e c u t i o n  i n t c ~  - 
r u p t e d  once i t  b e g i n s .  
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I n  s'hort, w e  h a v e  a 
scheduling scheme at the user 
task level to specify fixed- 
rate triggering of a task8' 
processing and the Ada pragma 
"PRIORITY" enforced at the 
u n d e r l y i n g  o p e r a t i n g  o r  
runtime system level to ensure 
uninterrupted c m p l e t i o n  of 
that processing. 

The major potential point 
o f  failure with respect to 
this type of approach to task 
schedulinq at the applications 
level is at the underlying 
runtime system level. The 
issue is one of consistency 
f r o m  i m p l e m e n t a t i o n  t o  
implementation with respect to 
time slicing of concurrently 
executing processes of equal 
priority. While fixed rate 
triggering of task execution 
c a n  be g u a r a n t e e d  v i a  a 
combination of algorithmic 
control, prioritization, and 
interrupt handlinq through the 
"psuedo executive", no such 
auarantee can be made with 
iespect to the method of time 
s l i c i n g  u t i l i z e d  by t h e  
underlying runtime support for 
concurrent tasks of equal 
priority. This will vary  from 
implementation to implemen- 
tation althouqh adhering to 
t h e  59-called "FAIR" require- 
n4clnr dictated by the language 
s I c i f i cation. Gilten the 

I ~ n q e n t  nature of typical 
I 1 :i performance and reliabil- 
. t y r e q u i r e m e n t s ,  t h i s  

i o t c : n t i a l  i n c o n s i s t e n t  
I t:t:avlor across i m p l e m e n -  

# ~ t  loris could pose a signi- 
! * i n t  r i s k .  

0 

handling eince external events 
o f t e n  d i c t a t e  a n e e d  t o  
dynamically chanqe priori- 
ties. The Ada rendezvous 
occuri in a first in, f i r s t  
o u t  m a n n e r  u s i n g  a queue 
structure for multiple eptry 
calls issued for a n y  given 
t a s k  e n t r y  1 oint ( A C C E P T  
state.nent). There is no way 
to reoider and influence the 
position a calling task m a y  
occupy in euch a queue. It is 
possible that with dynsmic 
task prioritization this could 
bc programmer controlled 

f i c i m v r  Smce The 
FORTRAN/ Assembly language 
implementation used as a model 
in this case study was coded 
in a little over 1 K (bytes) 
of memory and accounted f o r  
somewhat less than two percent 
of the entire system. While 
the entire Ada system congis- 
ted of just over 700 lines of 
code, the space requirements 
varied with respect to t h e  
host machine. The Ada version 
required anywhere from 27 K to 
38 K bytes of memory for thc 
applications code alone . T h c  
runtime kernel on one machine 
imposed an additional penalty 
of 200 K bytes to utilize the 
Ada tasking model. I t  should 
be noted, however, t h a t  t h e  
executive wau developed f o r  
functional realism and was not 
optimized €or minimal p t o q t a n ~  
size. The runtime k e t r i c l t :  
were larqt?, a e  much a 8  200K 
bytes, but the runtime kcrnclt,  
were intended for a rnain-frame- 
environment, not a typical ECS 
ap?l icnt ion. 

Static prioritization of T h e  sign i € ican t 1 eeuonti 
A f I d  t a s k s  may be a problem in learned were in what optionu 
' , o r i r :  i n s t a n c e s  of t a s k  were available to optimize the 
: c h r : d u l  i n g  o r  interru1)l: size a n d  speed of -the exccu- 
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t a b l e  image .  S i g n i f i c a n t  
s av ings  - approximately l O O K  = 
were a v a i l a b l e  via a eelect- 
i v e l y  loadab le  t a s k i n g  kernel 
in a t  l ea s t  one implementation 
w h i l e  o t h e r  o p t i o n s  r e s u l t i n g  
i n  s a v i n g s  were no  runt ime 
c h e c k i n g  (1-2K s a v i n g s ) ,  and 
no debugg ing  ins t rumenta t ion  
(SK r a v i n g s ) .  I n  one p a r t i -  
c u l a  r imp lemen ta t  i o n ,  t h e  
o p t i o n  f o r  space op t imiza t ion  
was o f f e r e d  y e t  y i e l d e d  no 
a p p r e c i a b l e  d i f f e r e n c e  i n  t h e  
s ize  of t h e  execu tab le  image. 

W h i l e  t h e r e  is no s t r i c t  
l i n e a r  r e l a t i o n s h i p  w i t h  
r e s p e c t  t o  o v e r h e a d  between 
hos t  and ECS environments ,  t h e  
s i g n i f i c a n t  s a v i n g s  r e a l i z e d  
through c o n f i g u r a b i l i t y  w i t h i n  
t h e  h o s t  e n v i r o n m e n t s  h a s  
u i g n i f i c a n t  p o s i t i v e  i m p l i -  
c a t i o n s  f o r  ECS environments  
where e f f i c i e n c y  c o n s t r a i n t s  
a r e  paramount. 

I t  was f o u n d  t h a t  t h e  
t o t a l  s t o r a g e  p e n a l t y  t o  
i n c l u d e  a minimal  e x c e p t i o n  
h a n d l i n g  c a p a b i l i t y  w i t h i n  
e a c h  Ada program u n i t  was on 
t h e  o r d e r  of 4-5  p e r c e n t  of 
t h e  t o t a l  p r o g r a m  s t o r a g e  
w h i l e  t h e  c p u  o v e r h e a d  t o  
i n v o k e  an e x c e p t i o n  h a n d l e r  
r a n g e d  f r o m  3 0 - 5 0 0  m i c r o -  
s e c o n d s .  T h i s  r e p r e s e n t s  an 
a c c e p t a b l e  c o s t  i n  e i t h e r  a 
h o g t  m a i n f  came o r  embedded 
envircinment . 

The overh-ad i n  terms of 
time t o  u t i l r z r  t h e  rendezvous 
m e c h a n i s m  w i t h i n  t h e  h o s t  
env i ron ,nen t  was r a t h e r  h i g h ,  
b e i n g  a p p r o x i m a t e l y  1 1 - 1 2  
m i l l i s e c o n d s .  G i v e n  t h e  
r e l a t i v e l y  r a p i d  frame times 
of many rca l - t ime a p p l i c a t i o n s  
( o n  t h e  o r d e r  o f  4 0 - 1 0 0  

m i l l i s e c o n d s ) ,  a f e a t u r e  t h a t  
uaes  a p p r o x i m a t e l y  one t e n t h  
a t  t h e  f r  me t i m e  p o s e u  

However, based 
upon  c u r r e n t  i n v e s t i g a t i o n s  
w i t h  Ada f o r  embedded 1 6  and 
32 b i t  t a r g e t s ,  the  c a s e  can 
be made t h a t  t h i s  i a  a problem 
s o m e w h a t  l o c a l i z e d  t o  t h e  
mainframe environment.  

s e r i o u s  r i s k  9 

T h e  a l t e r n a t e  d e s i g n  
a p p r o a c h  p r o p o s e d  i n  t h i s  
s t u d y  f o r  t h e  Ada p r i o r i t y  
d r i v e n  e x e c u t i v e  ( s e e  F i g u r e  
5 )  i8 i n t e n d e d  f o r  a b a r e  
mach inc  env i ronmen t  w i t h  n o  
r e s i d e n t  o p e r a t i n g  system nor  
a n y  v e . i d o r  s u p p l i e d  A d a  
runkime s u p p o r t .  The des ign  
of s u c h  an e x e c u t i v e  r a i s e s  
some i m p o r t a n t  i ssues  w i t h  
r e s p e c t  t o  v a l i d a t i o n  when 
c o n s i d e r i n g  w h a t  m u s t  be  
p r o v i d e d  t o  s u p p o r t  t h e  
e x e c u t i o n  o f  an  Ada a p p l i -  
c a t i o n  on s u c h  a bare t a r g e t .  
The  i m p l i c a t i o n s  of t h e  t r a d i -  
t i o n a l  model of an execu t i ve  , 
s u c h  a s  t h e  o r i g i n a l  
fORTRAN/Assembl y 1 a n g  u a y c  
implementation used a s  a basis 
f o r  t h i s  s ' u d y ,  a r e  c o n s i -  
de  red 

T h i s  a p p r o a c h  d i f f c t s  
g r e a t l y  f r o m  t h a t  whic.ti 
u t i l i z e s  an u n d e r l y i n g  r u n t i m c  
s y s t e m ,  T h i s  approach implies 
t h a t  beyond t h e  gene ra t ion  u f  
n a t i v e  machine i n s t r u c t  i o n : ;  
from t h e  HOL by some g c n e r i c  
t r a n s l a t o r  o r  c o m p i l e r ,  i t  
becomes n e c e s s a r y  t o  p r o v i d c  
programmer s u p p l i e d  s u p p o r t  
f o r  any HOL language f e a t u t c e  
n o t  d i r e c t l y  i m p l e m c n t a b i c  
throlrqb p r i m i t i v c e  on t h e  b a l e  
t i d r d w a r e .  I t  t h e r e f o r c  
b e c o m e s  t h c .  t a s k  o f  t h e  



r u n t i m e  supe rv i so r  or  execu- 
t i v e  software t o  p r o v i d e  t h i s  
u n d e r l y i n g  support f o r  t h i n g s  
s u c h  a s  c o n c u r r e n c y  o r  
m u l t i - t a s k i n g ,  I / O ,  d y n a m i c  
s t o r a g e  and  memory management 
t o  name a few.  I n  a d d i t i o n ,  
t h i s  e x e c u t i v e  m u s t  n o t ,  i n  
t u r n ,  r e l y  on  some u n d e r l y i n g  
s u p p o r t  f o r  i ts  own e x e c u t i o n .  

V a l i d a t i o n  is c e r t a i n l y  
an  issue w i t h  respect t o  t h i s  
k i n d  o f  s u b s e t  Ada approach .  
W h i l e  r e c o g n i z i n g  t h e  incom- 
p a t i b i l i t y  o f  t h i s  a p p r o a c h  
w i t h  t h e  n o t i o n  of v a l i d a t i o n ,  
we c h o o s e  n o t  t o  a d d r e s s  t h e  
t o p i c  i n  any  d e t a i l  o t h e r  t h a n  
t o  a c k n o w l e d g e  t h e  c o n f l i c t .  
Our f o c u s  is on t e c h n i c a l  r i s k  
i d e n t i f i c a t i o n  a n d  m i n i m i -  
za t i o n .  

T h e  d e s i g n  o f  t h i s  b a r e  
m a c h i n e  e x e c u t i v e  was p u r e l y  
h y p o t h e t i c a l  a n d  no s p e c i f i c  
e m b e d d e d  t a r g e t  was s e l e c -  
t e d .  F o r  t h a t  r e a s o n ,  o n l y  a 
h i g h - l e v e l  d e s i g n  was i t e r -  
a t e d .  C u r r e n t l y ,  t y p i c a l  
v e n d o r  s u p p l i e d  Ada r u n t i m e  
support p a c k a g e s  f a c i l i t a t e  
t h i n g s  s u c h  a s t  s y s t e m  
e l  abora t ion  o r  i n i t i a l i z a t i o n  , 
t a s k  c o m m u n i c a t i o n  a n d  
: . c h e d u l i n g ,  e x c e p t i o n  h a n -  
r i 1  i n q ,  i n t e r r u p t ,  I / O ,  a n d  
t v p e  s u p p o r t .  T h e  amount of 
o v e r h e a d  v a r i e s  w i t h  e a c h  
vr:ndor I s  imp lemen ta t ion .  T h e  
d c s i q n  p roposed  is f o r  an Ada 
l ! x r _ . c u t i v e  f u n c t i o n  t h a t  would 
n l i n 1 m a l l y  s u p p o r t  t h e  execu- 
t . lcJn o f  o t h e r  Ada s o f t w a r e  
c o n s t i t u t i n g  j o b s  o r  
' ' t c l s k s " .  H o w e v e r ,  t h e  Ada 
t a s k i n g  model is no t  s u p p o r t e d  

t h e  p r o p o s e d  s u b s e t  Ada 

A 8  i n  t h e  t r a d i t i o n a l  
model,  concur  r ancy  is a c h i e v e d  
v i a  t h e  e x e c u t i v e  u t i l i z i n g  a 
n o n  p r e - e m p t i v e ,  v o l u n t a r y  
c o n t e x t  swi t c h  i n g  mechanism. 
C o n t r o l  o v e r  s c h e d u l i n g  i s  
t h e r e f o r e  e x p l i c i t  and known 
t o  t h e  p r o q r a m m e r .  I n  
a d d i t i o n ,  any  dynamic d a t a  o r  
s t o r a g e  management is r e s t r i c -  
t e d  t o  t h a t  w h i c h  s u p p o r t s  t h e  
e x e c u t i o n  of  t h e  e x e c u t i v e  
f u n c t i o n s  o n l y .  

I t  m u s t  be noted t h a t  t h e  
n o t i o n  o f  a n  " a l l  Ada execu- 
t i v e "  a t  t h i s  l e v e l  is 
f a l l a c i o u s .  A c e r t a i n  amount 
o f  p r i v i l e g e d  a c c e s s i n g  of 
r e g i s t e r  and s t a c k  con ten t s  by 
t h e  e x e c u t i v z  f u n c t i o n s  t o  
f a c i l i t a t e  t h e  b a s i c  c o n t e x t  
s w i t c h i n g  a n d  memory manage- 
ment would be r e q u i r e d .  T h i s  
is n o t  d i r e c t l y  a c h i e v a b l e  
from w i t h i n  t h e  Ada l anguage .  
T h e r e f o r e ,  a component of t h e  
e x e c u t i v e  s o f t w a r e  ( e .g .  t h e  
C o n t r o l - T r a n s f e r - P a c k a g e )  
would  by n e c e s s i t y  be imple-  
m e n t e d  i n  a l o w e r  l e v e l  
p r o g r a m m i n g  l a n g u a g e .  I n  
c u r r e n t  commerc ia l  Ada run t ime  
s y s t e m s  f o r  embedded t a r g e t s  
s u c h  a s  t h e  1 7 5 Q A ,  t h i s  
a c c o u n t s  f o r  a p p r o x i m a t e l y  two 
p e r c e n t  of t h e  vendor  s u p p l i e d  
r u n t i m e  s u p p o r t .  Ada packaq-  
i n g  c o n c e p t s  f a c i l i t a t e  t h e  
e n c a p s u l a t i o n  and i s o l a t i o n  of 
s u c h  machine con t e x t  s e n s i t i v e  
Component E!. 

T h e  r a t i o n a l e  f o r  t h c  
a p p r o a c h  t o  c o n c u r r e n c y  
p r e s  e n  t ed i 8 s t r a i q h  t f o I wa rd . 
W h i 1 e c o n  t c x t 
s w i t c h i n g  c a n  be c o n c l i d e r e d  
r i s k y ,  i t  h a s  c e r t a i n  p o t e n -  
t i a l  b e n e f i t s .  I t  a v o i d s  the 
necessity of excessive l o c k i n q  
s i n c u  t h e  p r o g r a m m e r  knows 

e x p l  i c i t 
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e x a c t l y  when c o n t e x t  s w i t c h e e  
a r e  t o  be per formed.  Another  
b e n e f i t  is r e a l i z e d  when a 
h i g h  p r i o r i t y  e v e n t  occurs  
t h a t  m u s t  be h a n d l e d  r a p i d l y  
a s  i s  t h e  c a s e  i n  m a n y  
r e a l - t i m e  s y s t e m s ,  W h i l e  
h a n d l i n g  such  a n  e v e n t ,  i t  may 
be d e l e t e r i o u s  t o  r e l e a s e  t h e  
p r o c e s s o r .  F i n a l l y ,  t h e  
a v o i d a n c e  o f  u n n e c e s s a r y  
c o n t e x t  s w i t c h e s  a n d / o r  
c h e c k i n g  Q e s u l t s  i n  g r e a t e r  
e f f i c i e n c y  . 

A d m i t t e d l y ,  h o w e v e r ,  i t  
is r e a s o n a b l e  t o  q u e s t i o n  t h e  
f e a s i b i l i t y  and a d v a n t a g e s  of 
u s i n g  Ada w i t h o u t  i t s  t a s k i n g  
f e a t u r e s  and  o t h e r  r e a l - t i m e  
c o m p o n e n t s  v e r s u s  u s i n g  a n y  
o t h e r  h i g h - l e v e l  programming 
l a n g u a g e .  I t  s h o u l d  a l s o  be 
n o t e d  t h a t ,  w i t h  s o m e  
r e - w o r k i n g  o f  t h e  d e s i g n ,  
t h e r e  is n o t h i n g  t o  e x p l i c i t l y  
p r e v e n t  t h e  use of t h e  Ada 
t a s k i n g  moCel and  rendezvous  
c o n c e p t ,  p r o v i d e d  t h a t  t h e  
n e c e s s a r y  r u n t i m e  s u p p o r t  is 
s u p p l i e d  a t  a n  a c c e p t a b l e  c o s t  
i n  m e m o r y  o v e r h e a d  a n d  
e x e c u t i o n  e f f i c i e n c y .  T h i s  is 
t h e  m o t i v a t i n g  concept d r i v i n g  
o u r  c u r r e n t  a n d  f u t u r e  
i n v e s t i g a t i o n s  w i t h  r e s p e c t  t o  
Ada r e a l - t i m e  sys t ems  and w i l l  
be d i s c u s s e d  i n  t h e  f o l l o w i n g  
s ec t  ion .  

F u t u r e  I n v e a t i  - 
g a t i o n q  T h e  r a t i o n a l e  f o r  an 
a p p r o a c h  s u c h  a s  t h e  b t , r e  
m a c h i n e  o p t i o n  is t h a t  g i v e n  
t h e  p r e s e n t  s t a t e  of tacking 
s u p p o r t  i n  an  envi ronment  t h a t  
s u p p o r t s  f u : l  Ada t a s k i n g ,  
e x c e p t  i o n  h a n d 1  i n g  and o t h e r  
f ioL  f e a t u r e s ,  t h e  r e s u l t a n t  
program s i z e  may be u n s u i t a b l y  
l a r g e  f o r  a n  embedded a p p l i -  
c a t i o n .  W h i l e  t h e  a p p l i c o -  

t i o n s  l e v e l  s t r a t e g y  and tire 
b a r e  m a c h i n e  a p p r o a c h  r e p r e -  
s e n t  two a v a i l a b l e  o p t i o n s ,  a n  
a d d i t i o n a l  a l t e r n a t i v e  e x i s t s  
t h a t  h o l d s  some p r o m i s e  f o r  
t h e  d e s i g n  o f  c o m p a c t ,  
e f f i c i e n t  r e a l - t i m e  systerris 
a n d  is t h e  f o c u s  o f  o u r  
c u r r e n t  and  f u t u r e  i n v e s t i -  
g a t i v e  work. T h i s  c o n s i s t s  o f  
a m i g r a t i o n  t o  t h e  HTS l a y c r  
i n  p u r s u i t  of o p t i m i z a t i o n  and  
r i s k  r e d u c t i o n  a t  t h i s  l eve l  
w h i l e  m a i n t a i n i n g  t h e  c o m p l e t e  
(or n e a r l y  c o m p l e t e )  f u n c t i o n -  
a l i t y  of  t h e  l a n g u a g e .  T h e  
f o c u s  i s  o n  t a i l o r a b l e ,  
c o n f i g u r a b l e  r u n t i m e  s u p p o r t  
f o r  t h e  d e s i g n  of  e f f i c i e n t  
r e a l - t i m e  sys t ems  i n  Ada. 

I t  is h i g h l y  l i k e l y  tt 
t h e  f u l l  f u n c t i o n a l i t y  of t taL 
t r a d i t i o n a l  m o d e l  o f  a 
p r i o r i t y  d r i v e n  e x e c u t i v e  curl 
be a c h i e v e d  i n  t h i s  manner tJy 
m i n i m i z i n g  t h e  r o l e  of a 
programmer s u p p l i e d  execu t  i v c  
a n d  r e l y i n g  on t h e  e f f i c i e n t  
i m p l e m e n t a t i o n  o f  t h e  A d a  
t a s k i n g  model a t  t h e  o p e r a t  i n c :  
o r  r u n t i m e  s y s t e m  l e v e l .  
W h i l e  i t  may s t i l l  be neces- 
s a r y  t o  p r o v i d e  c u s t o m r z c d  
r u n t i m e / e x e c u t i v e  s u p p o r t ,  
t h i s  caii be p r o v i d e d  p r i u n a r i l y  
t h r o u g h  t a i l o r i n g  of e x i s t i n l j  
S y s t e m 6  a t  t h e  RTS l e v e l  t u  
mee t  s p e c i f i c  p e r f o r m a n c c  
r e q u  i r c m e n  t s t t l c l n  

e x e r t i n g  a d d i t i o n a l  c o n t r o l  \ ~ t  
t h e  a p p l i c a t i o n s  l d y e r .  

r a t  h e  r 

Our c u r r e n t  e f f o t t s  c ~ ~ c  
f o c u s e d  f o r e m o s t  on proof  ( I !  
c o n c e p t  - t h a t  we can  d e s l y n  
a n d  i m p l e m e n t  f a s t ,  compac t ,  
e f f i c i e n t ,  r e a l - t i m e  sys t c~ l lu  
i n  Ada - w i t h  a s e c o n c l a l ) .  
e m p h a s i s  on  t h e  v a l i d a t i o n  
i s e u e s .  T h e  s t e p s  w e  h a v e  
i d e n t i f i e d  as  b e i n g  ncccss i l ry  



t o  t h e  success o f  t h i s  e f f o r t  
i n c l u d e  : 

0 O b t a i n  V a l i d e d  Vendor  

0 M a i n t a i n  S t a b l e  R T S  

S u p p l i e d  RTS 

I n t e r f a c e  

0 Modify I n t e r n a l s  t o  g a i n  

0 A d d r e s s  (Re) V a l i d a t i o n  

R e q u i r e d  Per formance  

issues  

CONCLUSION 

A l t h o u g h  s e v e r a l  of t h e  
issues t h a t  f a c e  d e v e l o p e r s  of 
r e a l - t i m e  ECS a p p l i c a t i o n s  i n  
Ada  a r e  d e s i g n  i s s u e s  o r  
p r i m a r i l y  r e s o l v e d  t h r o u g h  
e d u c a t i o n ,  t r a i n i n g  and good 
p r o g r a m m i n g  t e c h n i q u e ,  many 
i s s u e s  remain t h a t  pose  r i s k  0 t o  t h e  d e v e l o p m e n t  o f  
r e a l - t i m e  s y s t e m s  i n  Ada. 

We h a v e  i d e n t i f i e d  a 
number of  key r i s k  a r e a s  and 
i s s u e s  f o r  r e a l - t i m e  E C S  
a p p l i c a t i o n s  and have e x p l o r e d  
t h e s e  i s s u e s ,  and  s o l u t i o n s ,  
w i t h i n  t h e  c o n t e x t  o f  a 
s p e c i f i c  Ada l a n g u a g e  a p p l i -  
c a t i o n .  W i t h  r e s p e c t  t o  t h e  
i s s u e s  t h a t  were s u c c e s s f u l l y  
a d d r e s s e d  w i t h i n  t h e  s cope  of 
t h i s  c a s e  s t u d y ,  t h e  f o l l o w i n g  
c o n c l u s i o n s  can  be made. 

Many i s s u e s  of  c o n c e r n  
e x i s t  d u e  t o  t h e  i m m a t u r i t y  
a n d  q u a l i t y  o f  Ada l a n g u a g e  
i rnp 1 emen t a t  i o n s  and unce r t a  i n  - 
t i e s  r e g a r d i n g  p e r f o r m a n c e .  
The p e r f o r m a n c e  o f  t h e  c o d e  
g e n e r a t e d  by  e a r l y  c o m p i l e r s  
may be poor and may r e s u l t  i n  
p o o r  s y s t e m  per formance .  How- 
e v e r ,  a s  Ada l anguage  Systems 
mature  and c u r r e n t l y ~  a v a i l a b l e  

0 - - .  

0 

0 
e 

p t i m i z i n g  t e c h n o l o g y  i s  
m p l o y e d ,  l a r g e  r u n t i m e  
v e r h e a d  w i t h  r e s p e c t  t o  

m e m o r y  u t i l i z a t i o n  a n d  
e x e c u t i o n  s p e e d  s h o u l d  
c e r t a i n l y  become l e s s  o f  a n  
i s sue .  T h i s  i s  i n  f a c t  t h e  
c a s e  w i t h  some o f  t h e  Ada 
l a n g u a g e  s y s t e m s  c u r r e n t l y  
under  development  . 

C u r  r e n t  i n v e s t i g a t i o n s  
w i t h  a v a r i e t y  o f  d i f f e r i n g  
c o m p i l e r  s y s t e m s  and run t ime  
env i ronmen t s  f o r  1 6  and  32 b i t  
embedded t a r g e t s  have  r e v e a l e d  
t h a t  k e r n e l  r u n t i m e  s y s t e m s  
c u r r e n t l y  e x i s t  t h a t  a p p e a r  t o  
b e  p r o v i d i n g  t h e  m i n i m a l ,  
c o n f i g u r a b l e  s u p p o r t  n e c e s s a r y  
t o  accommodate  Ada l a n g u a g e  
f e a t u r e s  i n  a t i m e l y  a n d  
ef f i c i e n t  manner .  S t a n d a r d -  
i z e d  k e r n e l  run t ime  s u p p o r t  on 
t h e  o r d e r  o f  2K p r o v i d e d  b y  
m i n i m a l  s y s t e m  s e r v i c e  
i n t e r f a c e s  i s  c u r r e n t l y  
a v a i l a b l e  (e .9 .  VRTX) and can 
b e  t a r g e t e d  a n d  u t i l i z e d  
e f f i c i e n t l y  by  Ada c o m p i l e r  
s y s t e m s  f o r  a v a r i e t y  o f  
embedded t a r g e t s .  

P l o b l e m s  remain w i t h  t h e  
n o n - s u p p o r t  among many Ada 
i m p l e m e n t a t i o n s  o f  c e r t a i n  
r e a l - t i m e  f e a t u r e s  of t h e  Ada 
l a n g u a g e .  A c a s e  i n  p o i n t  is 
t h e  v e c t o r i n g  of  i n t e r r u p t s  t o  
t a s k  e n t r i e s  v i a  t h e  Ada 
r e p r e s e n t a t i o n  s p e c i f i c a t i o n .  
T h i s  c o n t i n u e s  t o  be a conce rn  
t o  t h e  r e a l - t i m e  a p p l i c a t i o n s  
c o m m u n i t y  a l t h o u g h  i t  i s  
s o m e w h a t  l o c a l i z e d  t o  t h e  
ma i n f  f a m e  e n v i r o n m e n t  . 
A d d i t i o n a l  problems a r e  r o o t e d  
i n  t h e  l anguage  s p e c i f i c a t i o n  
i t s e l f  ( M I L  STD 1815A) w h i c h  
f a i l s  t o  p r o v i d e  c e r t a i n  
f e a t u r e s  d e s i r a b l e  i n  t y p i c a l  
r e a l - t i m e  systems. 
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While'alternatives exist, 
this lack of certain explicit 
l a n g u a g e  p r i m i t i v e s  poses 
unique problems for many type8 
of real-time applications. 
S p e c i f i c a l l y ,  t h e  lack of 
explicit language pr imitives 
t o  a l l o w  dynamic "discon- 
nection" and "connection" to 
i n t e r r u p t s  w i t h o u t  t h e  
termination or creation of a 
program u n i t  (task) and the 
inability to utilize dynamic 
task prioritization are of 
major concern to ECS devel- 
opers. Furthermore, the lack 
of precision in the specifi- 
cation of exact delays as well 
as the lack of alternatives or 
a b i l i t y  t o  time-out during 
initiated rendezvous' may be 
an impediment to the develop- 
ment of efficient, reliable 
real-time systems in Ada. 

T h e r e  is a continuinq 
need for a clear, c o n c i s e  
d e s i q n  m e t h o d o l o q y  f o r  
r e a l - t i m e  e m b e d d e d  A d a  
applications that includes a 
criteria for the identifi- 
cation of concurrency and a 
g r a p h i c  means of depicting 
concur rent relationships with 
t i m i n g  and synchronization 
information at any given point 
in the system. While helpful, 
t h e  hybrid method utilized 
during this case study f a l l s  
short o f  f u l f i l l i n g  such a 
broad requirement. 

We are currently contin- 
uinq our real-time investi- 
g a t i o n s  t o  e v a l u a t e  t h e  
effectiveness of Ada language 
systems f o r  real-time embedded 
applications within realistic 
host and target environments. 
This work is being carried out 
with a focus on the 1750A and 
68000 compiler a n d  runtime 

e nv i r o nme n t 8 . 
The focue of our in i t i a l  

case etudy waa at the appli- 
c a t i o n s  l evel although o n  
alternative was proposed f o r  a 
prohibitively restrictive Ada 
e x e c u t i v e  t h a t  f u l f i l l e d  CI 

subset of the runtime r e s p o n -  
s i b i l i t i e s  t o  support t h e  
execution of concurrent ~ d a  
programs. The current approach 
calla for migration to the RTS 
level to investigate optiml- 
z a t i o n  a n d  t a i l o r i n g  o f  
e x i s t i n g  s y s t e m s  to a l l o \ r  
e f f i c i e n t  u s e  of the A d a  
t a s k i n g  m o d e l  and o t h e r  
r e a l - t i m e  features within 
r e a l i s t i c  target e n v i r o n -  
ments. I t  is in this manner 
t h a t  w e  w i l l  a t t e m p t  t o  
address and seek additional 
information and solutions to 
those issues left unanswered 
i n  o u r  p r e l i m i n a r y  A d a  
r ea1 -t ime inves t i qa t i  ons . 

O p t i o n s  f o r  f u t u r e  
e f f i c i e n c y  improvement a n d  
r isk-reduct ion include : 

0 H i g h l y  C o n f i g u r a b l c  
Runtime Support S y s t e m s  

0 S t a n d a r d i z e d  R u n t  1 1 1  t 
Suppoc t Systcnis 

0 Support in Silicon 

0 C u s t o m  RTS C o n i y o n ( * r l t  : 
Libraries 

T h e  a u t h o r 5  w i s t t  t i l  
acknowledqc thc support , l t l i i  

a d v i c e  o f  t h e  yeroonncl ;It 
I n t e r m e t r i c s ,  I n c .  i n  t t l v  
preparat i o n  of t h i s  m , \ n i i -  

script . 
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(Informal Presentation) 

Dick Naedel, President 
Intellimac 

Rockville, Maryland 

Real Time Ada in a MC68XXX System 

This presentation will present recent results of running Ada 
programs in a Motorola based embbedded computer system. 
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OBJECT-ORIENTED DEVELOPHENT 

by 

Donald G. Firesmith 
Software Hethodologiet 

Hagnavox Electronic Syeteme Company 
Advanced Software Syetems Division 

1313 Production Road 
Fort Uayne. IN 46808 

( 2 1 9 )  429-4327 

1 )  WHY IS OBJECT-ORIENTED DEVELOPMENT (OOD) IMPORTANT? 

O O D  ie one of the extremely feu eoftuare development methode 
actually deeigned for modern Ada ( * I  language. real-time. 
embedded appllcatione. 

O O D  is a eigniflcant improvement over more traditional functional 
decomposition and modeling methode in that OOD: 

a) Better managee the eize. complexity. and concurrancy 

b) Better addreeeee important eottuare engineering 
of today’s syeteme. 

princlplee euch as abetract data types. levele of 
abstractionr and information hiding. 

real i ty. 

data end thue limiting the impact of requlremente changes. 

c) Producee a better deelgn that more closely matchee 

d )  Producee more maintainable eoftuare by better localizing 

e) Specifically exploite the pouer of Ada. 

2) VHAT IS OOD? 

OOD ie a eyetematic. etep-by-etep eoftuere development method that: 

a) Hae an optimal domain of application -- the development of 
b) Covere alle or a m a j o r  portion. of the eoftuare life-cycle. 
c) Supporte exteneive parallel development. 
d )  Henagee the complexity of large development efforte. 
e) le supported by detailed etandarde and proceduree. 
f )  Requtree training and eupport to be effective. 

modern Ada appllcatione (e.~.. real-time. embedded eoftuare). 

O O D  ie: 

a ) 
b) Ada-oriented. 

Obj ec t-or i ented. 

( i t )  Ada ie a regietered trademark of t h e  U . S .  Government (AJPO). a 
D . 4 . 1 . 1  
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E N T I T Y - A T T R I B U T E  R E L A T I O N S H I P  
D a t a b a s e  T e c h n o l o g y  ( 1 9 6 0 ' s )  - 

c )  Based upon modern aoftuaro engineering. 
d) Recursive. globally top-down, hierarchical COHPOSITION 

e) Revolutionary in approach. 
f )  A "grab and go" method. 
gl Relatively eaey to learn. 
h) Being aucceeefully used by several companlee. 
i )  Still evolving (Bee figure 1 ) .  

method. 

. 
L E V E L S  OF ADBSTRACTION 
D t j k s t r a  (1968) 

ABSTRACT DATA TYPES 
L ( s k o v ,  G u t t o g ,  Show (1970's) 

FORMAL TECHNIOUES 
R o b t n s o n ,  L e o v l t t  (19771 

INFORMATION H I D I N G  
P a r n a s  (19721 

r 
NOUNS AND VERBS 
A b b o t t  (19811 

Figure 1 :  The evolution of OOD 
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AFATDS EXPERIENCE 
M o g n a v o x  (1985) 

OBJECT-ORIENTED DEVELOPMENT 
F t r e s m t t h ,  e t .  a l .  (1985) 



OOD ia NOT: 

A functional, hierarchical DECOHPOSlTlOW method. 
A modeling method. 
Easily mated with much methode. 
Effective without adequate training. 
Conetrained to the claaeical muaterfall" lifecycle. 
Consietent with DOD-STD-2167 and related pre-Ada etandarde. 
Standardized acroer the indumtry. 
Yet adequately eupported by commercially available eoftWare 
tools. 

3) OOD IS OBJECT-ORIENTED. 

An OBJECT ie an entity that: 

a) Hae a value (e.g. . data) or state (e.g. Ada taek). 
b) Suffere and/or caueee operatione. 

OOD producee: 

a) Ada objecte that correepond to objecte in the real world. 
b) Ada typee (i.e.. object templatee). 
c) Operatione that operate on theme objecte. 

OOD emphaeizee the implementation of objecte in terme of 
ABSTRACT DATA TYPES. OOD groupe. in the eame Ada package: 

a) A mingle type and 
b) A l l  operatione that operate upon euch objecte. 

OOD producee a eubetantially different eoftuare architecture 
than traditional functional decompoeition method8 euch am 
Structured Deeign which generate untts. each of which implements 
eome FUNCTION of the requirement8 epecification. 

4) OOD IS ADA-ORIENTED. 

Ada ie an object-oriented high-level language. 

Packagee. which are the main building blocke of properly designed 
Ada eoftuare. are ale0 the main building blockm produced by OOD. 

The physical design produced by OOD ie top-down in terme of Ada: 

a) Neeting and 
b) Context (i.e.. the Ada "uith" etatement). 

OOD eeparately develope Ada epecificatione and bodies. 

O O D * e  low-level teeting naturally accounte for Ada compilation 
order conetra 1 nte. 
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OOD Diaqrame clearly identify the vmrious Ada programming iinite. 

Ad8 PDL ir an intogral part o f  OOD'r  dorign 8nd coding rtope- 

The Object8 produced by OOD aro implemented in Ada ae: 

a) Constants and variables 
b) Abetract data typor 
0 )  T a s k r  

The operatione producmd by OOD mro implemented i r i  Ada primarily 

a) Subprograms 
b) Taek entries 

5 )  OOD IS BASED UPON HODERN SOFTVARE ENGINEERING. 

OOD specifically addresses each of the following eoftuare 
engineering principlee or concepts: 

a) ABSTRACT DATA TYPES. i ) HODULAR ITY. 
b) ABSTRACTION LEVELS. j )  Organizational Independence. 
c) Coheeion. k) Readabi 1 i ty. 
d )  Concurrency. 1 )  Reusability. 
e) Coupling. m )  Structuro. 
f 1 INFORHATION HIDING. n) Teatability 
g )  Localization. 0 )  Verifiability. 
h )  HAINTAINABILITY. 0 

6) O O D  IS RECURSIVE, GLOBALLY TOP-DOVN, HIERARCHIAL COHPOSITION METHOD. 

Traditional software development methods are reetricted to the 
claeeic wuaterfall* life-cycle (eee Figure 2 )  in which: 

a) The eoftuare requiremente are analyzed firet. 
b) The preliminary deeign ie developed eecond. 
c )  The detailed deeign followe. 
d )  And eo on. 

csc I 
lES l I f f i  1 

Figure 2: The claeeic "uaterfall" life-cycle 
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Bocauoe tho eoftw8ro 1. dmvoloped in 8 top-down manner only within 
the boundrier of 08oh lif~-cycIm phmre, theme aethode are at beet 
only locally top-down. 

OOD 1. a rocurrlve~ globrlly top-doun. hierarchial compoeition 
method. Itr roftumre lifo-cyclm (om. Figure 3) diftors eignificantlY 
from the cl8eeio “uaterfalla life-cycle becauee rt le baeed upon 
reCUr0iOn and tWO concepte unique to OOD: tha Booth and SubbOOCh. 

A BOOCH is t h e  collection of a11 eottuare reeulting from the 
recursive application of O O D  to o mpecific met of coherent 
eottuare requiresente -- roquirernnte that rpecify a mingle 
well-defined problem. 

A SUBBOOCH ie a emall. onnagable eubset of a booch that ie 
identilied and developed during a eingle recureion of OOD. 
See Figure 4. 

Note that theme two concepte have no obvioue natural relationehip to 
the DoD hierarchical decompoeition entitiee CSCI. TLCSC. and LLCSC. 

Beginning with the higheet abetraction level and progreeeing 
steadily dounuarde in terme of nesting and *uithingw. the booch 
le deeignedr coded. and tested in incremente of a eubbooch. Thug. 
the eoftwere groue top-down. eubbooch by eubbooch. via the 
recureive application of ODD until the entire softuare tree 
ie completed. 

Locally. however. OOD employe the appropriate technique 
(top-down or bottom-up) depending upon the epecific requirement8 
of each individual development activity. 

This alloue very significant parallel development baoed upon the 
“Deeign a little. code a little. teat a little“ concept. 

7 )  AESPONS I B I L I T I ES. 

The follouing pereonnel have OOD reeponeiblitiee (eee Figure 5 ) :  

a )  Hanagement 
b )  Softuare Development Teams. each coneistino of a: 

- Designer 
- Programmer 
- Teeter 

c )  Hetrice Collectore 
d )  Softuare Puality Evaluation 
e) Softuare Syetem Engineering 

8 )  SUBBOOCH DEVELOPHENT 

The eubbooche that compriee each booch are recureively developed 
in a globally top-down fashion. The development of each eubbooch 
coneiete of the following three EUbph86ee: 

D.4.1.5 



0 

0B.ECT- W T W A R E  SYSTEM 
OAIENTED 
DEVELOPrENT AN0 TEST AND TEST 

INTEGRATION INTEiFAlIm I BUILD L 1 BUILD L 1 BUILD L 

Figure 3: Tho OOD eoftuare life-cycle 
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I I 

I I 
I I 

I I 
I I 

I 

TERTIARY SUBBOOCH 
RESULTING FROM 
THE USE OF 
RECURSION 

WHEREI 0 REPREKNTS A SUBPWXRAM A N 0  REPRESENTS A MPENDENCY I 
REPRESENTS A PACKAGE 

Figure 4: Sample Booch structure 
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I H I Softwmrm I 
Objmot-Orlmntmd Dmvmlopmmnt Proammm I G I Dmv. Tmmm I I s 

Step I Tit 10 I T l D l P l T l C l E  
= = = = = = = = = = ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - = = = - - = - ~ = - = - = - - - = - = - - -  

- - - - - - - - g - o ~ ~ g ~ g ~ ~ ~ g ~ ~ ~ ~ ~ o ~ g ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  n I----------- I H I Q  

1 I INITIATION OF BOOCH DEVELOPXENT 1 1 1  I l l  1 4  

2 I SUBBOOCH DEVELOPHENT I---------------------" 

2 - 1  I SUBBOOCH REQUIREHENTS SUBPHASE I----------------------- 
2.1.1 I Inltimtlon of Subboooh Dmvmlopmmnt 1 1 1  I 1 1 1 4  
2.1.2 I Inltimtlon of tho SDF 1 3 1 1 1  1 I 1 4  
2.1.3 I Problmm Statmmont 1 3 1 1 1 2 1 2 1  1 4  
2.1.4 I Rrpuirmmsntm Analymim 1 3 1 1 1 2 1 2 1  1 4  
2.1.5 I Subbooch Roquirmmmntm lnmpmction 1 1 1 2 1 2 1 2 1  1 4  

2.2 I SUBBOOCH DESIGN SUBPHASE I----------------------- 
2.2.1 I Loglcml Dmmign 1 3 1 1 3 2 1 2 1  1 4  
2.2.2 t Object Anmlymim 1 3 : 1 1 2 1 2 1  1 4  
2.2.3 1 Opmrmtion An8lyrir 1 3 1 1 1 2 1 2 1  1 4  
2.2.4 I Unit Id., 0rg.r and Dependonciom 1 3 1 1 1 2 1 2 1  1 4  
2.2.5 1 Subboooh Prmliminmry Deoign Inmpmction I 3 I 2 1 1 I 1 I 1 4  
2.2.6 I Dmoign Analymim 1 3 1 1 1 2 1 2 1  I 4  
2.2.7 1 Coding of Unit Speoificmtione 1 3 1 1 1 2 1 2 1  1 4  
2 .2 .8  I Subbooch Dmt8iled Dmmign Inmpmction 1 3 1 2 1 1 1 2 1 1 1 4  

2.3.1 I Coding of Unit Bodire 1 3 1 3 1 1 1 2 1  1 4  
2.3.2 1 Subbooch Tmrt Plan 1 3 1 2 1 2 1 1 1  1 4  
2.3 .3  I Subbooch Tmmt Software 1 3 1 2 1 2 1 1 1  1 4  
2.3.4 I Subbooch Tmmt Procrduras 1 3 3 2 3 2 1 1 :  : 4  
2.3.5 : Subbuoch Code Inrpection 1 3 1 1 1 2 : 2 : 1 : 4  
2.3.6 1 Initial Subbooch Teeting 1 3 1 2 1 2 1 1 1  1 4  

3 1 BOOCH INTEGRATION AND TESTING I----------------------- 

3.1 I BOOCH INTEGRATION 1 3 1  I I 1 1  : 4  
3.2 I BOOCH FUNCTIONAL TESTING 1 3 1  I 1 1 1  1 4  
3 .3  1 BOOCH DELIVERABLE DOCUHENTATION 1 2 1 1 1 1 1 1 :  1 4  
3.4 1 BOOCH REVIEV 1 1 : 2 1 2 : 2 1 1 : 1  

---------------o-------g-----o------g----------------------------------- 

- - _ - - - o - - _ o - - - - - - - - - - - - - - - - - - - - - - - - -  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
@ 2 .3  1 SUBBOOCH CODE AND TEST SUBPHASE I----------------------- 

---------------------------------------------.--------------------------- 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

........................................................................ 
HGHT - Hanagement 1 - Primmrv or major rmmponolbility 

D = Deeigner(e) 2 = SrOond8ry rrrponmibility 
P = Programmer(e) 3 m tlanageriml reeponeibility 
T = Teeter(e) 4 = Indmpmndmnt mudit responeibility 

NC = Hetrice Collector(0) 
SPE = Software Puelity Evaluation 

FIGURE 5: OOD Reeponeibilitiee 
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‘ m  
a )  Subboooh Rmquirmmmntm. 
b) Subbooah Dmmigtz.  
a )  Subbooah Cod. and Tmmt. 

Thm SUBBOOCH REOUIREHENTS SUBPHASE h8m tho following rtope: 

INITIATION OF SUBBOOCH DEVELOPHENT - Tho Hmnager initimtoe 
mubboooh dmvolopmmnt by idmntifying the mombere of the 
8eSOt~iated Softw8rm Devolopment Toam and t8mking them to 
meet an 8mrigned oahmdulm 0 2  mubbooch milmstonee. 

INITIATION OF SOFTWARE DEVELOPHENT FILE (SDF) - The Deeigner 
initfatom thm aeoooiatmd SDF by obtmining an ompty SDF 
binder 8nd inmorting tho initial Soitw8re Engineering Form. 
( S E F S )  that make up the covmrp8ges. 

PROBLER STATEHENT - Tho Softuoro Dovolopmont Te8m jointly 
atate in a eingle eentrnce the problam to be eolved during 
the current recureion. 

REQUIRERENTS ANALYSIS - The Softuare Development Team jointly 
col lect. analyze. clari iy. organize. and identify the eubbooch 
requi rrmente. 

SUBBOOCH REQUlRE?fENTS INSPECTION - The Deeigner prepares the 
SDF f o r  inepoction. Tho Hanager echeduleo the apreocioted 
meeting. The Hanager. the Programmer* and the Teeter perform 
the inepection. The Software Development Team takee any 
8ppropriate corrective action. 

The SUBBOOCH DESIGN SUBPHASE has the following mtepe: 

LOGICAL DESIGN - The Software Development Team (under the 
leaderehip of the Deeigner) devralope in a eingle paragraph 
a logical design that properly eolvoe the problmm of the 
current recureion and identifiee the relevant object6 and 
operatione. 

OBJECT ANALYSIS - The Software Development Team (under the 
leadarehip of the Deetgner) anrlyzee a11 relevant ObjeCte 
in the logical deeign perrgrrph. determinee and documente 
their relevancy. and providee the relevant objecte uith 
valid Ada identifiere- brief deecriptione, and a liet ot 
aeeociated ottributee. 

OPERATION ANALYSIS - The Software Development Team (under the 
leaderehip of the Doeigner) 8nmlyzeo all relevant operatione 
in the logical deeign paragraph. determines and documente 
their relevancy* and providee the rrlevent operatione uith 
valid Ada identifiers. brief dercriptiono. and a liet of 
aeeociated at t ri butee. 

HODULE IDENTIFICATION. ORGANIZATION. AND DEPENDENCIES - The 
Software Development Team (under the leaderehip of the 
Deeigner) organizee all relevant objecte and operatione 
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by typm8r idontifimm thm non-nmmtmd unitm for  maoh muoh 
Or98niz8tionr nmmtm thm orgmniamd objmctm and OpmratiOnm 
within thmro unitr. 8nd dmtmrminom tho vimiblo dmpmndmnoimo 
bmtuoen thmmo unitm. 

SUBBOOCH PRELIHINARY DESIGN INSPECTION - Thm Dmmignmr prmparmm 
the SDF for inmpmotion. Thm Progrmmmmr and Tmrtmr pmrform 
thm Inmpmotion. Thm Softuarm Dmvmlopmmnt Imam takmm m y  
approprimtm oorrmotivm action. 

DESIGN ANALYSIS - Tho Softuarm Dmvmlopment T m 8 m  (undmr thm 
lmadmrmhip of thm Dmsignmr) analy~oe tho dmmignr idmntifiom 
the typm of thm nemtmd unitm. oommon moftuarm* and nertmd 
unite requiring rmureion. mto. 

CODING OF UNIT SPECIFICATIONS - The Softwaro Development Te8m 
tundor tho 1madarsl.ip of the Demignor) implmmmntm and 
compiler. in bottom-up manner in t e r m m  of unit dmpondenciomt 
the Ada epeoiticatione of all unite. Thim includmm the 
development of epecification hmadere. PDL. commantm. and 
code from ekoleton unit epooificatione. 

SUBBOOCH DETAILED DESIGN INSPECTiON - The Derigner prepmrem 
the SDF for inepmction. The tlotriar Collootor colleotm. 
eummarizee. and reportm the eubbooch design motrice. 
The Programmer end Teeter perform thm Inmpmction. Thm 
Softuere Development Team takes any rppropri8tm oorrrctivm 
action. 

The SUBBOOCH CODE AND TEST SUBPHASE ham the following stepe: 

CODING OF UNIT BODIES - The Software Development Team (under 
the leaderehip of the Programmer) implement. and compilom* 
in a top-down manner in terme of unit dependenciem. thm 
Ada bodiem of all unite to be implementod during thm currmnt 
build. Thio tncludee the development of body hemderm~ PDL. 
cornmente. and code from ekeleton unit bodiee ueing the 
technique ot etep-uiee retinement. 

SUBBOOCH TEST PLAN - The Software Development Team (under 
the leaderehip o f  the Teeter) develope the teet plan by 
determining. creating file0 of. and documenting the tset 
input and expected teet output date required f o r  all 
aubbooch teeting end documenting the allocetion of theme 
teat camem to specific eubbooch teeto. 

SUBBOOCH TEST SOFTVARE - The Software Development Team (under 
the leadership of the Teeter) demignm. implemrnts. rnd 
cornpilee all teet eOftWare program8 required f o r  subbooch 
teeting echeduled for the, current build. 

S I J B B O O C H  TEST PROCEDURES - The Softuare Development Team (under 
the leaderehip of the Teeter) develope the detailed stmp-by- 
etep proceduree f o r  performing 011 eubboooh tmmtr moheduled 
Zor the current bui Id. 
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SUBBOOCH CODE INSPECTION - Tho Progrmmmer proparen tho SDF for 
inrpootion. Tho Hotrior Colloator oollootml mummarizom~ 
mnd rmportr tho rubboooh oodo motriam. Tho Softuaro 
Dovmlopmont Trmm porform tho inmpootion. Thm Softuare 
Devolopmont Tomm tmkor mny approprieto corrootive action. 

INITIAL SUBBOOCH TESTING - The Softuarm Development Team 
(undor tho lomder~hip of tho To~tor) perform and document 
tho rorultr of a11 initial rubboooh torte. 

9)  PRACTICAL EXPERIENCE. 

The uee of O O D  at Hognavox on the AFATDS Project (over 50K 
linea of Ada code eo f e r )  hee rmsultad in the follouinQ leoeone 
1 earned : 

Avoid overe:mcrfying the requirementfa uith cexplicit or 
implicit deeign information of a functional decompoeltion 
nature. 

I f  e functional decompoeition method ie ueed to produce the 
top-level deeign. It uill be incompatible uith the deelgn 
produced by O O D  at the lower-levele and numeroum interface 
problem6 wi 1 1  roeul t. 

Replacing the previoue functional decompoeition mindeet isa 
difficult. primarily among the more experienced deeignere. 

The concept of  recureion re fairly difficult to meeter. 

OOD training and eupport in t1.e method need.e to continue 
beyond the c 1 aeeroom. 

000 needs to be further refined. primarily in the area of 
object-oriented requirement@ analyeie. 

Ada-oriented teet traininn le as necemsary ae training 
in Ada-oriented deeign mntl programming. 

O O D  improves deeigne due to: 

- Proper abetraction levele. 
- Proper information hiding. 
- High modularity. 
- Improved interfacee. 
- Good eupport f o r  etrong typing. 
- Good correepondonce to the, real uorld. 

OOD improvee productivity due to: 

- Fnhanced parnllel development. 
- Reliee of code. 
- Eaey coding from deeigri intormation. 
- Eoey modification Of deeion and code. 
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